
SEEDPOD Ground Risk: A Python application and library
for Uncrewed Aerial Systems ground risk analysis and
risk-aware path finding
Aliaksei Pilko1 and Zachary Tait1

1 Faculty of Engineering and the Environment, University of Southampton
DOI: 10.21105/joss.04079

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @kylebeggs
• @austintschaffer

Submitted: 13 January 2022
Published: 17 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
The proliferation of Uncrewed Aerial Systems (UAS) for a wide range of use-cases, from
logistics to urban air mobility, is increasing. A common theme in the majority of use-cases
is the operation in and around urban areas, where a critical failure of one or more onboard
systems can result in the UAS departing controlled flight and posing a hazard to, amongst
other parties not considered here, third parties located on the ground in the vicinity of the
UAS.

There are established methods of probabilistically modelling onboard failures, such as failure
tree analysis (Hammer et al., 2017), to arrive at an overall probability of the UAS departing
controlled flight. This can be combined with impact probability density modelling (Cour-Harbo,
2020) to assign probabilities to impact a given cell. Once cell probabilities are assigned, a
population model determines the probability of striking a person within each cell. Impact
fatality models (Ancel et al., 2017) are further used to transform this to probabilities of causing
a fatality in each cell.

A full UAS ground risk map is generated by summing all probabilities for a Loss of Control
(LoC) occurring at a specified altitude for each cell. This represents the probability of causing
harm or a fatality (depending on the summed probabilities) if the aircraft were to fail at that
location.

The general equation is

Pharm(x, y) = PLoCPstrike|LoC(x, y)Pharm|strike(x, y)

where x, y are grid indices referring to the location of LoC, Pharm is the probability of causing
harm, PLoC is the probability of the aircraft entering a LoC state; this can be found using
aforementioned methods, Pstrike|LoC is the probability of striking a person given the LoC has
occurred, Pharm|strike is the probability of the strike causing a given harm, usually a fatality.

Each probability component is driven by a different set of models, however the overall procedure
is identical in that every cell in the risk map must be iterated over and a LoC modeled at that
location, then the resultant single point risk map summed to represent the overall probability
for that LoC location. It is this element of the process that can be parallelised without
synchronisation between threads/processes.

Statement of Need
SEEDPOD Ground Risk is a Python application and package that enables the generation of
risk maps by implementing fast GPU-accelerated routines for the risk calculation as well as

Pilko, & Tait. (2022). SEEDPOD Ground Risk: A Python application and library for Uncrewed Aerial Systems ground risk analysis and risk-aware
path finding. Journal of Open Source Software, 7(71), 4079. https://doi.org/10.21105/joss.04079.

1

https://doi.org/10.21105/joss.04079
https://github.com/openjournals/joss-reviews/issues/4079
https://github.com/aliaksei135/seedpod_ground_risk/
https://doi.org/10.5281/zenodo.6363635
http://danielskatz.org/
https://github.com/kylebeggs
https://github.com/austintschaffer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04079

being, to the authors best knowledge, the first open-source probabilistic ground risk assessment
tool. Numba is used for all calculation acceleration and enable the fallback to JIT-compiled
CPU code where a compatible NVIDIA GPU is not detected. A common set of scientific and
geospatial Python packages are used, such as NumPy, SciPy, Pandas, and GeoPandas.

The software is intended to allow for further development and testing of different constituent
models as part of a holistic ground risk assessment process. This enables the exploration of
individual model effects on the final ground risk map without the reimplementation of the
remainder of the process and with the benefit of the code optimisation already performed.

The use of the Python programming language allows for rapid prototyping due to the interpreted
nature of the language as opposed to a compiled language. This, however results in lower
computational performance compared to an equivalent C++ implementation.

A basic user interface is implemented to allow for non-expert users to utilise the tool and
promote the safer flight of UAS. This is packaged in an installer that ensures all dependencies
are installed with the package. The user interface exposes much the same functionality as the
API in a no-code environment.

Acknowledgements
This work is funded by the Engineering and Physical Sciences Research Council as part of
the E-Drone project under grant number EP/V002619/1. The authors would like to thank
András Sóbester, James Scanlan, and Mario Ferraro for their guidance and advice on theoretical
aspects of the work.

References
Ancel, E., Capristan, F. M., Foster, J. V., & Condotta, R. C. (2017). Real-time risk assessment

framework for unmanned aircraft system (UAS) traffic management (UTM). https://doi.
org/10.2514/6.2017-3273

Cour-Harbo, A. la. (2020). Ground impact probability distribution for small unmanned
aircraft in ballistic descent. 2020 International Conference on Unmanned Aircraft Systems
(ICUAS), 1442–1451. https://doi.org/10.1109/ICUAS48674.2020.9213990

Hammer, J., Murray, A. R., & Lowman, A. (2017). Safety analysis paradigm for UAS:
Development and use of a common architecture and fault tree model. 2017 IEEE/AIAA
36th Digital Avionics Systems Conference (DASC), 1–10. https://doi.org/10.1109/DASC.
2017.8102039

Pilko, & Tait. (2022). SEEDPOD Ground Risk: A Python application and library for Uncrewed Aerial Systems ground risk analysis and risk-aware
path finding. Journal of Open Source Software, 7(71), 4079. https://doi.org/10.21105/joss.04079.

2

https://doi.org/10.2514/6.2017-3273
https://doi.org/10.2514/6.2017-3273
https://doi.org/10.1109/ICUAS48674.2020.9213990
https://doi.org/10.1109/DASC.2017.8102039
https://doi.org/10.1109/DASC.2017.8102039
https://doi.org/10.21105/joss.04079

	Summary
	Statement of Need
	Acknowledgements
	References

