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Summary

A main problem with reproducing machine learning publications is the variance of metric
implementations across papers. A lack of standardization leads to different behavior in mech-
anisms such as checkpointing, learning rate schedulers or early stopping, that will influence
the reported results. For example, a complex metric such as Fréchet inception distance (FID)
for synthetic image quality evaluation (Heusel et al., 2017) will differ based on the specific
interpolation method used.

There have been a few attempts at tackling the reproducibility issues. Papers With Code
(Papers with Code, n.d.) links research code with its corresponding paper. Similarly, arXiv
(Arxiv, n.d.) recently added a code and data section that links both official and community
code to papers. However, these methods rely on the paper code to be made publicly accessible
which is not always possible. Our approach is to provide the de-facto reference implementation
for metrics. This approach enables proprietary work to still be comparable as long as they've
used our reference implementations.

We introduce TorchMetrics, a general-purpose metrics package that covers a wide variety of
tasks and domains used in the machine learning community. TorchMetrics provides standard
classification and regression metrics; and domain-specific metrics for audio, computer vision,
natural language processing, and information retrieval. Our process for adding a new metric
is as follows, first we integrate a well-tested and established third-party library. Once we've
verified the implementations and written tests for them, we re-implement them in native
PyTorch (Paszke et al., 2019) to enable hardware acceleration and remove any bottlenecks in
inter-device transfer.

Statement of need

Currently, there is no standard, widely-adopted metrics library for native PyTorch. Some
native PyTorch libraries support domain-specific metrics such as Transformers (Wolf et al.,
2020) for calculating NLP-specific metrics. However, no library exists that covers multiple
domains. PyTorch users, therefore, often rely on non-PyTorch packages such as Scikit-learn
(Pedregosa et al., 2011) for computing even simple metrics such as accuracy, F1, or AUROC
metrics.

However, while Scikit-learn is considered the gold standard for computing metrics in regres-
sion and classification, it relies on the core assumption that all predictions and targets are
available simultaneously. This contradicts the typical workflow in a modern deep learning
training/evaluation loop where data comes in batches. Therefore, the metric needs to be
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calculated in an online fashion. It is important to note that, in general, it is not possible to
calculate a global metric as its average or sum of the metric calculated per batch.

TorchMetrics solves this problem by introducing stateful metrics that can calculate metric
values on a stream of data alongside the classical functional and stateless metrics provided by
other packages like Scikit-learn. We do this with an effortless update and compute interface,
well known from packages such as Keras (Chollet & others, 2015). The update function
takes in a batch of predictions and targets and updates the internal state. For example, for
a metric such as accuracy, the internal states are simply the number of correctly classified
samples and the total observed number of samples. When all batches have been passed to
the update method, the compute method can get the accumulated accuracy over all the
batches. In addition to update and compute, each metric also has a forward method (as
any other torch.nn.Module) that can be used to both get the metric on the current batch
of data and accumulate global state. This enables the user to get fine-grained info about the
metric on the individual batch and the global metric of how well their model is doing.

# Minimal example showcasing the TorchMetrics interface
import torch

from torch import tensor, Tensor

# base class all modular metrics inherit from

from torchmetrics import Metric

class Accuracy(Metric):
def __init__(self):

super().__init__Q)
# "self.add_state” defines the states of the metric
# that should be accumulated and will automatically
# be synchronized between devices
self.add_state("correct", default=tensor(0), dist_reduce_fx="sum"
self.add_state("total", default=tensor(0), dist_reduce_fx="sum"

def update(self, preds: Tensor, target: Tensor) -> None:
# update takes “preds’ and “target’ and accumulate the current
# stream of data into the global states for later
self.correct += torch.sum(preds == target)
self.total += target.numel()

def compute(self) -> Tensor:
# compute takes the accumulated states
# and returns the final metric wvalue
return self.correct / self.total

Another core feature of TorchMetrics is its ability to scale to multiple devices seamlessly.
Modern deep learning models are often trained on hundreds of devices such as GPUs or TPUs
(see Zhai et al. (2021); Liu et al. (2019) for examples). This scale introduces the need to
synchronize metrics across machines to get the correct value during training and evaluation.
In distributed environments, TorchMetrics automatically accumulates across devices before
reporting the calculated metric to the user.

In addition to stateful metrics (called modular metrics in TorchMetrics), we also support a
functional interface that works similar to Scikit-learn. This interface provides simple Python
functions that take as input PyTorch Tensors and return the corresponding metric as a PyTorch
Tensor. These can be used when metrics are evaluated on single devices, and no accumulation
is needed, making them very fast to compute.

TorchMetrics exhibits high test coverage on the various configurations, including all three
major OS platforms (Linux, macOS, and Windows), and various Python, CUDA, and PyTorch
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versions. We test both minimum and latest package requirements for all combinations of OS
and Python versions and include additional tests for each PyTorch version from 1.3 up to
future development versions. On every pull request and merge to master, we run a full test
suite. All standard tests run on CPU. In addition, we run all tests on a multi-GPU setting
which reflects realistic Deep Learning workloads. For usability, we have auto-generated HTML
documentation (hosted at readthedocs) from the source code which updates in real-time with
new merged pull requests.

TorchMetrics is released under the Apache 2.0 license. The source code is available at https:
//github.com/PyTorchLightning/metrics.
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