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Statement of need
A detonation is supersonic combustion in which a reaction front is coupled with a pressure shock
front (Lee, 2008). Adiabatic heating from the shock front helps to sustain the combustion,
which in turn accelerates the shock front and allows it to propagate supersonically. Because
the products of a detonation are at a higher pressure than the reactants, thermodynamic cycles
using detonations, such as the Humphrey cycle, have the potential for higher thermodynamic
efficiency than deflagration-based cycles, such as the Brayton cycle (Coleman, 2001). However,
knowledge of a reactant mixture’s characteristic detonation structure is needed in order to
make practical use of it with detonation-based cycles.

The behavior of a detonation can be investigated either via simulation or physical experimenta-
tion. Given that detonation is an inherently three-dimensional process (Ciccarelli & Dorofeev,
2008; Lee, 2008), accurate simulations can be computationally expensive (Kessler et al., 2010),
requiring runs on the order of days to months for a single 2-D simulation depending on the
hardware involved (Kessler et al., 2011; Radulescu et al., 2007). Alternatively, a detonation
tube is often used to experimentally study the behavior of detonations. In a detonation tube,
data for a given set of initial conditions can be collected anywhere from multiple times per
second (e.g., in a pulse detonation engine) to multiple times per hour (e.g., in a closed-end
detonation tube).

The design of a detonation tube requires many considerations, including estimation of the
required length for deflagration-to-detonation transition (DDT), tube material and size selection
(including the effects of transient pressures), fastener failure calculations (including bolt pull-
out), flange class selection, viewing window sizing (if optical access is required), and prediction
of safe operating conditions (including accounting for detonation reflection in the case of a
closed-end tube). All of this is specific to the mixture being detonated, therefore it is important
to be able to quickly re-perform the analysis for new reactant mixtures. The tools within
pypbomb provide a first-order analysis meant to serve as the basis for the previously detailed
analysis.

Summary
pypbomb contains a series of tools that can be used to iterate on initial design parameters
and obtain an estimate for the operational envelope of a closed-end detonation tube. This
package is not meant to replace the design process entirely, but rather to provide an initial
design of a detonation tube through a series of simplified analyses. A conservative safety
factor is recommended given the dynamic nature of detonations, as well as a more in-depth
analysis of the tube’s individual components; the analysis in this package assumes steady state
propagation at equilibrium conditions and does not account for transient effects other than
through a dynamic load factor. The first iteration of this package was written during the
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design of a detonation tube that has been used to measure cell sizes of gaseous detonations,
and will be used in the near future for the study of detonations in two-phase mixtures.

pypbomb.Tube allows the user to quickly iterate on the design of the piping portion of a
detonation tube and determine its safe operational limits. Nominal Pipe Size (NPS) lookups
are included, allowing the user to quickly assess different tube geometries. Once the tube
geometry is determined, the stress limits of the pipe material are used to evaluate the maximum
allowable static pressure within the tube. For convenience, maximum allowable stress values of
stainless steels are available as a function of temperature (American Society of Mechanical
Engineers, 2007). Alternative allowable stress values, such as those calculated using the ASME
Boiler and Pressure Vessel code, may also be manually supplied by the user. However, it is
important to keep in mind that no code currently exists for the design of detonation tubes
(because of the dynamic transient pressures they experience as well as with their experimental
nature), and any estimate using existing code should be accompanied by a more in-depth
evaluation and/or a large safety factor. Once the user has determined the allowable stress, it
is used to calculate the maximum operating pressure of the tube (Megyesy, 2001). Accounting
for the tube geometry and predicted mixture detonation behavior, a dynamic load factor is
calculated and applied (Shepherd, 2009). The dynamic load factor is used to adjust the
static pressure limit to account for the tube’s response to the transient pressure caused by
the detonation wave. The maximum initial reactant pressure is then iteratively determined
for a given tube geometry, reactant mixture, and initial temperature using the maximum
operating pressure. Detonation wave speeds and reflection properties for the desired reactant
mixture are calculated using selected functions adapted from the shock and detonation toolbox
(SDToolbox) (Browne et al., 2019). The curve fitting portion of the wave speed estimation in
SDToolbox has been parallelized in order to speed up computation.

Once the operational limits of a tube are determined, flanges can be sized. pypbomb.Flange

looks up the minimum necessary flange class based on the maximum tube pressure and
temperature based on the standards set forth in ASME B16.5-2003 (American Society of
Mechanical Engineers, 2004). Although they are used here to provide an estimate of minimum
flange class, ASME codes do not account for impulsive loads such as those caused by detonations.
Therefore further analysis should be conducted on a per-flange basis, using the recommended
flange size as an initial design.

A successful detonation tube design must account for the deflagration-to-detonation transition
(DDT). DDT is usually achieved using a series of blockages, which causes the combustion
wave to undergo local accelerations, thereby aiding in the DDT process (Ciccarelli & Dorofeev,
2008). The blockages must be properly sized, and must continue for a minimum (mixture
specific) distance in order to maximize the probability of a successful transition to detonation.
To this end, pypbomb.DDT contains tools for Shchelkin spiral blockage ratio and diameter
calculations, and allows the user to estimate the necessary DDT run-up length for a desired
mixture using Cantera (Ciccarelli & Dorofeev, 2008; Goodwin et al., 2018). For blockage ratios
BR ≤ 0.1 the run-up length, XS , inside a tube of diameter D is estimated to be
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where SL is the mixture’s laminar flame speed, δ = ν/SL is the mixture’s laminar flame
thickness, ν is the kinematic viscosity, σ is the product/reactant density ratio, η = 2.1, and
m = −0.18 (Ciccarelli & Dorofeev, 2008). For blockage ratios 0.3 ≤ BR ≤ 0.75, the run-up
length is estimated to be

XS ≈ a
Dap(1−BR)

20SL(1 + bBR)(σ − 1)

where a = 2, b = 1.5, and ap is the speed of sound within the products (Ciccarelli &
Dorofeev, 2008). Run-up length for blockage ratios 0.1 < BR < 0.3 are estimated by linearly
interpolating between the two formulas, each evaluated at the relevant endpoint. Blockage
ratios greater than 0.75 are not considered.

Finally, pypbomb provides some tools to facilitate the inclusion of optical access in the detonation
tube. Historically, the structure of detonations have typically been studied using soot covered
foils inserted along the wall or end-cap of detonation tubes (Lee, 2008). More recently,
however, researchers have begun using high speed photography to study detonation waves,
including PLIF and focusing schlieren methods (Mével et al., 2015; Pintgen & Shepherd,
2003; Radulescu et al., 2007; Rankin, 2016; Stevens et al., 2015). In some cases, soot foil
and schlieren techniques have been used simultaneously (Kellenberger & Ciccarelli, 2017). If
optical access is desired, window thickness and factor of safety calculations can be quickly
performed for clamped rectangular windows using pypbomb.Window (Crystran LTD, 2014).
These calculations do not account for loads applied to the window due to contact with the
detonation tube or window retainers; it is critical that windows be isolated from contact with
any hard surfaces. In our tube this was accomplished using rubber gaskets on the faces of the
windows as well as around the periphery. In addition to window calculations, pypbomb.Bolt
allows the user to estimate bolt stress areas and safety factors in order to keep the windows
intact and prevent bolts from pulling out of the tube (Oberg, 2000).
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