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Summary
Molecular dynamics (MD) is a computational methodology in which the dynamical behavior of
systems of interacting atoms and molecules is investigated by integrating the corresponding
classical equations of motion. The analysis of the molecular trajectories yields an incredibly
powerful computational microscope with atomic resolution. While prominent examples of
molecular dynamics involving all-atom models exist, many systems operate on time- and
lengths scales too large, precluding the use of such an approach. The intrinsic complexity of
biological soft-matter systems has necessitated the development of coarse-grained (CG) MD
models wherein groups of atoms are treated as individual entities. To probe experimentally
relevant length- (nm–µm) and time- (ps–ms) scales, further reduction of computational
complexity may be warranted through the removal of explicit particle–particle interactions in
favor of particle–density field interactions. Such hybrid particle–field (hPF) models recast the
interactions between particle pairs into a system of free particles interacting with an external
potential dependent on the density, in analogy with self-consistent field theories.

HylleraasMD (named after our affiliate centre, the Hylleraas Centre for Quantum Molecular
Sciences) (HyMD) is a Python package capable of highly parallel hPF-MD simulations of a
wide range of surfactants and other biological systems in a CG representation. At present, it is
the only open-source implementation of the hPF formalism freely available to computational
researchers.

Theoretical background
Hybrid particle–field methods are computationally efficient schemes for simulating mesoscale
macromolecular assemblies (Milano & Kawakatsu, 2009). Ordinary MD involves, at every
integration step, the calculation of computationally expensive double sum over all particle
pairs. Despite numerous clever decompositions of the simulation box, which reduces the formal
scaling of this (Frenkel & Smit, 2001), it remains the major computational bottleneck. Hybrid
particle–field simulations forego this step completely, instead indirectly coupling particles only
through an interaction energy functional depending on a slowly varying density field. Exploiting
the slow time evolution of the density fields, it is possible to employ multiple time-step algorithms
which only seldom impart field impulses on individual particles. Beyond this fundamentally
more efficient setup of hPF models, the major advantage over particle–particle approaches is
the intrinsically embarrassingly parallel nature of a large portion of the calculations; inter-MPI
communication only being necessary whenever the density field is updated. This is traditionally
done every tens–several hundreds of MD steps. Accordingly, the hPF methodology has been
successfully applied to polymer melts (Wu et al., 2020, 2021), different phases of lipids and
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surfactants (Bore et al., 2019, 2020; Carrer et al., 2020; De Nicola et al., 2015; De Nicola et
al., 2021; Ledum et al., 2020), and charged surfactants and polypeptides (Bore et al., 2018;
Kolli et al., 2018; Schäfer et al., 2020).

Statement of need
Elucidating fundamental aspects of the complexity of biological systems often requires atomically
resolved mesoscale simulations. One crucial example is the large-scale macromolecular self-
assembly of lipids and proteins into eukaryotic cell membranes or intracellular organelle
structures. Some such systems are computationally accessible today at the CG-MD level,
but this is far from routine and not achievable for the broad scientific community. Hybrid
particle–field models allow in principle exploration of such systems at near-atomistic resolution,
with good chemical accuracy.

Since the hPF scheme was proposed (Milano et al., 2013), two main codes have been used
to perform such simulations. (i) OCCAM (Zhao et al., 2012), a proprietary Fortran software
developed by Milano and co-workers; and (ii) GALAMOST (Zhu et al., 2013), a CUDA-GPU
accelerated C++ code developed by researchers at Jilin University. Unfortunately, neither
are open source and freely available to scientists wishing to run hPF simulations of bio- and
soft-matter systems.

HyMD is, to date, the only available open-source hPF simulation software. Furthermore,
through a recent reformulation of the hPF formalism (Bore & Cascella, 2020), which decouples
the computational mesh grid and the length scale of the particle–grid interaction, a new
Hamiltonian hPF (HhPF) method has emerged. Currently, HyMD constitutes the only software
for performing HhPF simulations, open-source or otherwise. This new scheme has a number
of advantages over canonical hPF, such as rigorous energy and momentum conservation,
rotationally and translationally invariant forces, and a tunable coarse-graining length scale
representing the size extent of particles. Additionally, the new formulation naturally lends itself
to calculations in reciprocal space, enabling us to take advantage of highly optimized FFT
algorithms.

Features
Apart from a minimal set of high-performance Fortran kernels, the entirety of HyMD is written
in Python. This makes extending the software with new functionality easy, enabling fast
prototyping of new features. The key components of HyMD include:

• Standard hPF interaction functionals, with the option to specify any (local or otherwise)
functional, which is automatically handled through symbolic differentiation and numpy
vectorization.

• Density filtering (with any user-provided filter function), enabling canonical hPF or HhPF
simulations with tunable coarse-graining scale which can be changed on-the-fly.

• Optional explicit electrostatic interactions through our custom long-range Particle-Mesh
Ewald implementation.

• All standard intramolecular bonded interactions, including stretching, bending, torsional
potentials, and combined bending–torsional potentials describing peptide backbone
conformations (Bore et al., 2018).

• Topological reconstruction of permanent peptide chain backbone dipoles, enabling
realistic protein conformational simulations (Alemani et al., 2010; Bore et al., 2018;
Cascella et al., 2008).

To probe experimentally relevant structures, parallelization through mpi4py is used. A 2D
pencil grid domain decomposition is employed, separating spatial areas of the simulation box
across MPI ranks. The highly scalable PFFT (Pippig, 2013) library is used for reciprocal space
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calculations, as a backend for the PMESH (Feng et al., 2017) package through which we handle
the particle–mesh part of the code. A specialized HDF5 file format for MD trajectories (Buyl
et al., 2014) is used to enable massively parallel file IO while maintaining an easy structural
organization of quantities calculated for storage.

Availability
HyMD is free and open-source, published under a permissive GNU Lesser General Public License
v3.0 (LGPLv3). The source code is available at github.com/Cascella-Group-UiO/HyMD. Docu-
mentation, usage guides, and tutorials can be accessed via cascella-group-uio.github.io/HyMD.
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