
pyemgpipeline: A Python package for electromyography
processing
Tsung-Lin Wu1, Amr A. Alhossary2, Todd C. Pataky3, Wei Tech Ang1,2,
and Cyril J. Donnelly2¶

1 Nanyang Technological University, School of Mechanical & Aerospace Engineering 2 Nanyang
Technological University, Rehabilitation Research Institute of Singapore 3 Kyoto University,
Department of Human Health Sciences ¶ Corresponding author

DOI: 10.21105/joss.04156

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @tuliofalmeida
• @osorensen

Submitted: 24 January 2022
Published: 12 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
We have developed an electromyography (EMG) signal processing pipeline package called
pyemgpipeline, which is suitable for both surface EMG and intramuscular EMG processing.
pyemgpipeline implements internationally accepted EMG processing conventions and provides
a high-level interface for ensuring user adherence to those conventions, in terms of (1) process-
ing parameter values, (2) processing steps, and (3) processing step order. The international
standards are from surface EMG for non-invasive assessment of muscles (SENIAM) (Stegeman
& Hermens, 1999). The seven processing steps included in the package are DC offset removal,
bandpass filtering, full wave rectification, linear envelope, end frame cutting, amplitude nor-
malization, and segmentation. In sport tasks particularly, it has been observed that amplitudes
greater that 100% maximum voluntary contraction (MVC) can be observed (Devaprakash
et al., 2016). Therefore, we will be using amplitude normalization recommendations from
Devaprakash et al. (2016) for amplitude normalization – this method guarantees a muscle will
not exceed 100% MVC as all EMG trials from the experiment are used to identify maximal
muscle activation. What is not included in the package is time event detection and time
normalization as different laboratories are interested in different phases of gait and prefer to
use either linear or nonlinear time normalization techniques.

As stated by Stegeman & Hermens (1999) although EMG is easy to use it is also easy to
abuse. Researchers have thus tried to standardize the use of EMG regarding implementation,
analysis, and reporting (Editors, 2018; Merletti & Torino, 1999; Stegeman & Hermens, 1999).
These fine works however have arguably been unsuccessfully adopted by many researchers to
date. Based on the published standards and decades of practical experience, we summarize
EMG signal processing conventions into the seven steps mentioned above and implement them
within an easy-to-use package so that researchers and clinicians with all levels of experience
process their EMG signals using correct conventions. In addition to the processing steps and
their order, the choice of processing/filtering parameters can be changed to match the needs
of the research or clinician. For example, within the bandpass filtering step, proper values of
the low and high cutoff frequencies of the Butterworth bandpass filter depend on different use
cases. We carefully set default values in the package, and we also include suggested values
under different scenarios in related API documentation (Drake & Callaghan, 2006; Editors,
2018; Merletti & Torino, 1999; Stegeman & Hermens, 1999).

After the aforementioned seven processing steps, sometimes it is necessary to perform the time
normalization step before further analysis. Time normalization can be executed by an external
package mwarp1d (Pataky et al., 2019).

Within this package, class DataProcessingManager is designed for high-level, guided processing,
and users are encouraged to use it to adhere to accepted EMG processing conventions.

Wu et al. (2022). pyemgpipeline: A Python package for electromyography processing. Journal of Open Source Software, 7(72), 4156.
https://doi.org/10.21105/joss.04156.

1

https://doi.org/10.21105/joss.04156
https://github.com/openjournals/joss-reviews/issues/4156
https://github.com/aalhossary/pyemgpipeline
https://doi.org/10.5281/zenodo.6422544
https://osorensen.rbind.io/
https://github.com/tuliofalmeida
https://github.com/osorensen
https://creativecommons.org/licenses/by/4.0/
https://aalhossary.github.io/pyemgpipeline/api/pyemgpipeline.processors.html#bandpassfilter
https://aalhossary.github.io/pyemgpipeline/api/pyemgpipeline.wrappers.html#dataprocessingmanager
https://doi.org/10.21105/joss.04156


The depiction of pyemgpipeline data processing flow is shown in Figure 1, which includes
the original signal and the processed signals of all processing steps. Please refer to the full
documentation and the source code for detailed information.

Statement of need
Research purpose: pyemgpipeline aims to provide software tools for electromyography
(EMG) data processing, while ensuring adherence to internationally accepted EMG processing
conventions.

Problem solved: pyemgpipeline implements internationally accepted EMG processing con-
ventions and provides a high-level interface for ensuring user adherence to those conventions.
It facilitates the convenience and correctness of processing EMG data. To our best knowledge,
no other package provides tools of EMG processing pipeline to ensure users adhere to accepted
conventions in terms of (1) processing parameter values, (2) processing steps, (3) processing
step order, and (4) amplitude normalization.

Target audience: The target audience is anyone working with surface or intramuscular EMG
data such as gait biomechanics, sports science, rehabilitation, and robotics.

Wu et al. (2022). pyemgpipeline: A Python package for electromyography processing. Journal of Open Source Software, 7(72), 4156.
https://doi.org/10.21105/joss.04156.

2

https://aalhossary.github.io/pyemgpipeline/
https://aalhossary.github.io/pyemgpipeline/
https://github.com/aalhossary/pyemgpipeline
https://doi.org/10.21105/joss.04156


Figures

Figure 1: Depiction of pyemgpipeline data processing flow. (x-axis: seconds, y-axis: amplitude.)

References
Devaprakash, D., Weir, G. J., Dunne, J. J., Alderson, J. A., & Donnelly, C. J. (2016).

The influence of digital filter type, amplitude normalisation method, and co-contraction

Wu et al. (2022). pyemgpipeline: A Python package for electromyography processing. Journal of Open Source Software, 7(72), 4156.
https://doi.org/10.21105/joss.04156.

3

https://doi.org/10.21105/joss.04156


algorithm on clinically relevant surface electromyography data during clinical movement
assessments. Journal of Electromyography and Kinesiology, 31, 126–135. https://doi.org/
10.1016/j.jelekin.2016.10.001

Drake, J. D. M., & Callaghan, J. P. (2006). Elimination of electrocardiogram contamination
from electromyogram signals: An evaluation of currently used removal techniques. Journal
of Electromyography and Kinesiology, 16, 175–187. https://doi.org/10.1016/j.jelekin.
2005.07.003

Editors. (2018). Standards for reporting EMG data. Journal of Electromyography and
Kinesiology, 42, I–II. https://doi.org/10.1016/S1050-6411(18)30348-1

Merletti, R., & Torino, P. di. (1999). Standards for reporting EMG data. Journal of
Electromyography and Kinesiology, 9(1), III–IV. https://doi.org/10.1201/9781420036985.
ax2

Pataky, T. C., Naouma, H., & Donnelly, C. J. (2019). mwarp1d: Manual one-dimensional
data warping in python and PyQt. Journal of Open Source Software, 4(44), 1870. https:
//doi.org/10.21105/joss.01870

Stegeman, D. F., & Hermens, H. J. (1999). Standards for surface electromyography: The
european project ”surface EMG for non-invasive assessment of muscles (SENIAM)” (pp.
108–112). European Community.

Wu et al. (2022). pyemgpipeline: A Python package for electromyography processing. Journal of Open Source Software, 7(72), 4156.
https://doi.org/10.21105/joss.04156.

4

https://doi.org/10.1016/j.jelekin.2016.10.001
https://doi.org/10.1016/j.jelekin.2016.10.001
https://doi.org/10.1016/j.jelekin.2005.07.003
https://doi.org/10.1016/j.jelekin.2005.07.003
https://doi.org/10.1016/S1050-6411(18)30348-1
https://doi.org/10.1201/9781420036985.ax2
https://doi.org/10.1201/9781420036985.ax2
https://doi.org/10.21105/joss.01870
https://doi.org/10.21105/joss.01870
https://doi.org/10.21105/joss.04156

	Summary
	Statement of need
	Figures
	References

