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Summary and statement of need
The ever-increasing demand for resolution and accuracy in mathematical models of physical
processes governed by systems of Partial Differential Equations (PDEs) can only be addressed
using fully-parallel advanced numerical discretization methods and scalable solution methods,
thus able to exploit the vast amount of computational resources in state-of-the-art supercom-
puters. To this end, GridapDistributed is a registered Julia (Bezanson et al., 2017) software
package which provides fully-parallel distributed memory data structures and associated meth-
ods for the Finite Element (FE) numerical solution of PDEs on parallel computers. Thus, it can
be run on multi-core CPU desktop computers at small scales, as well as on HPC clusters and
supercomputers at medium/large scales. The data structures in GridapDistributed are designed
to mirror as far as possible their counterparts in the Gridap (Badia & Verdugo, 2020) Julia
software package, while implementing/leveraging most of their abstract interfaces (see Francesc
Verdugo & Badia (2022) for a detailed overview of the software design of Gridap). As a result,
sequential Julia scripts written in the high-level Application Programming Interface (API) of
Gridap can be used verbatim up to minor adjustments in a parallel distributed memory context
using GridapDistributed. This equips end-users with a tool for the development of simulation
codes able to solve real-world application problems on massively parallel supercomputers while
using a highly expressive, compact syntax that resembles mathematical notation. This is indeed
one of the main advantages of GridapDistributed and a major design goal that we pursue.

In order to scale FE simulations to large core counts, the mesh used to discretize the com-
putational domain on which the PDE is posed must be partitioned (distributed) among the
parallel tasks such that each of these only holds a local portion of the global mesh. The same
requirement applies to the rest of data structures in the FE simulation pipeline, i.e., FE space,
linear system, solvers, data output, etc. The local portion of each task is composed by a set of
cells that it owns, i.e., the local cells of the task, and a set of off-processor cells (owned by
remote processors) which are in touch with its local cells, i.e., the ghost cells of the task (Badia
et al., 2020). This overlapped mesh partition is used by GridapDistributed, among others,
to exchange data among nearest neighbors, and to glue together global Degrees of Freedom
(DoFs) which are sitting on the interface among subdomains. Following this design principle,
GridapDistributed provides scalable parallel data structures and associated methods for simple
grid handling (in particular, Cartesian-like meshes of arbitrary-dimensional, topologically n-cube
domains), FE spaces setup, and distributed linear system assembly. It is in our future plans
to provide highly scalable linear and nonlinear solvers tailored for the FE discretization of
PDEs (e.g., linear and nonlinear matrix-free geometric multigrid and domain decomposition
preconditioners). In the meantime, however, GridapDistributed can be combined with other
Julia packages in order to realize the full potential required in real-world applications. These
packages and their relation with GridapDistributed are overviewed in the next section.

There are a number of high quality open source parallel finite element packages available in
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the literature. Some examples are deal.II (Arndt et al., 2021), libMesh (Kirk et al., 2006),
MFEM (Anderson et al., 2021), FEMPAR (Badia et al., 2017), FEniCS (Logg et al., 2012),
or FreeFEM++ (Hecht, 2012), to name a few. All these packages have their own set of
features, potentials, and limitations. Among these, FEniCS and FreeFEM++ are perhaps
the closest ones in scope and spirit to the packages in the Gridap ecosystem. A hallmark of
Gridap ecosystem packages compared to FreeFEM++ and FEniCS is that a very expressive and
compact (yet efficient) syntax is transformed into low-level code using the Julia JIT compiler
and thus they do not need a sophisticated compiler of variational forms nor a more intricate
workflow (e.g., a Python front-end and a C/C++ back-end).

Building blocks and composability
Figure 1 depicts the relation among GridapDistributed and other packages in the Julia
package ecosystem. The interaction of GridapDistributed and its dependencies is mainly
designed with separation of concerns in mind towards high composability and modularity.
On the one hand, Gridap provides a rich set of abstract types/interfaces suitable for the FE
solution of PDEs (see Francesc Verdugo & Badia (2022) for more details). It also provides
realizations (implementations) of these abstractions tailored to serial/multi-threaded computing
environments. GridapDistributed implements these abstractions for parallel distributed-memory
computing environments. To this end, GridapDistributed also leverages (uses) the serial
realizations in Gridap and associated methods to handle the local portion on each parallel task.
(See Figure 1 arrow labels.) On the other hand, GridapDistributed relies on PartitionedArrays
(F. Verdugo, 2021) in order to handle the parallel execution model (e.g., message-passing
via the Message Passing Interface (MPI) (Message Passing Interface Forum, 2021)), global
data distribution layout, and communication among tasks. PartitionedArrays also provides a
parallel implementation of partitioned global linear systems (i.e., linear algebra vectors and
sparse matrices) as needed in grid-based numerical simulations. While PartitionedArrays is
an stand-alone package, segregated from GridapDistributed, it was designed with parallel FE
packages such as GridapDistributed in mind. In any case, GridapDistributed is designed so
that a different distributed linear algebra library from PartitionedArrays might be used as well,
as far as it is able to provide the same functionality.

Figure 1: GridapDistributed and its relation to other packages in the Julia package ecosystem. In this
diagram, each rectangle represents a Julia package, while the (directed) arrows represent relations
(dependencies) among packages. Both the direction of the arrow and the label attached to the arrows
are used to denote the nature of the relation. Thus, e.g., GridapDistributed depends on Gridap and
PartitionedArrays, and GridapPETSc depends on Gridap and PartitionedArrays. Note that, in the
diagram, the arrow direction is relevant, e.g., GridapP4est depends on GridapDistributed but not
conversely.

As mentioned earlier, GridapDistributed offers a built-in Cartesian-like mesh generator, and
does not provide, by now, built-in highly scalable solvers. To address this, as required by
real-world applications, one can combine GridapDistributed with GridapP4est (Martin, 2021)
and GridapPETSc (F. Verdugo et al., 2021) (see Figure 1). The former provides a mesh data
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structure that leverages the p4est library as highly scalable mesh generation engine (Burstedde
et al., 2011). This engine can mesh domains that can be expressed as a forest of adaptive
octrees. The latter enables the usage of the highly scalable solvers (e.g., algebraic multigrid)
in the PETSc library (Balay et al., 2021) to be combined with GridapDistributed.

Usage example
In order to confirm our previous claims on expressiveness, conciseness and productivity (e.g.,
a very small number of lines of code), the example Julia script below illustrates how one
may use GridapDistributed in order to solve, in parallel, a 2D Poisson problem defined on the
unit square. (In order to fully understand the code snippet, familiarity with the high level
API of Gridap is assumed.) The domain is discretized using the parallel Cartesian-like mesh
generator built-in in GridapDistributed. The only minimal burden posed on the programmer
versus Gridap is a call to the prun function of PartitionedArrays right at the beginning of the
program. With this function, the programmer sets up the PartitionedArrays communication
backend (i.e., MPI communication backend in the example), specifies the number of parts
and their layout (i.e., (2,2) 2D layout in the example), and provides a function (using Julia
do-block syntax for function arguments in the example) to be run on each part. This function
is equivalent to a sequential Gridap script, except for the CartesianDiscreteModel call, which,
in GridapDistributed, also requires the parts argument passed back by the prun function. In a
typical cluster environment, this example would be executed on 4 MPI tasks from a terminal
as mpirun -n 4 julia --project=. example.jl.

using Gridap

using GridapDistributed

using PartitionedArrays

partition = (2,2)

prun(mpi,partition) do parts

domain = (0,1,0,1)

mesh_partition = (4,4)

model = CartesianDiscreteModel(parts,domain,mesh_partition)

order = 2

u((x,y)) = (x+y)^order

f(x) = -Δ(u,x)

reffe = ReferenceFE(lagrangian,Float64,order)

V = TestFESpace(model,reffe,dirichlet_tags=”boundary”)

U = TrialFESpace(u,V)

Ω = Triangulation(model)

dΩ = Measure(Ω,2*order)

a(u,v) = ∫( ∇(v)·∇(u) )dΩ

l(v) = ∫( v*f )dΩ

op = AffineFEOperator(a,l,U,V)

uh = solve(op)

writevtk(Ω,”results”,cellfields=[”uh”=>uh,”grad_uh”=>∇(uh)])

end

Parallel scaling benchmark
Figure 2 reports the strong (left) and weak scaling (right) of GridapDistributed when applied
to an standard elliptic benchmark PDE problem, namely the 3D Poisson problem. In strong
form this problem reads: find u such that −∇ · (κ∇u) = f in Ω = [0, 1]3, with u = uD on
ΓD (Dirichlet boundary) and ∂nu = gN on ΓN (Neumann Boundary); n is the outward unit
normal to ΓN. The domain was discretized using the built-in Cartesian-like mesh generator
in GridapDistributed. The code was run on the NCI@Gadi Australian supercomputer (3024
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nodes, 2x 24-core Intel Xeon Scalable Cascade Lake cores and 192 GB of RAM per node) with
Julia 1.7 and OpenMPI 4.1.2. For the strong scaling test, we used a fixed global problem size
resulting from the trilinear FE discretization of the domain using a 300x300x300 hexaedra
mesh (26.7 MDoFs) and we scaled the number of cores up to 21.9K cores. For the weak
scaling test, we used a fixed local problem size of 32x32x32 hexaedra, and we scaled the
number of cores up to 16.5K cores. A global problem size of 0.54 billion DoFs was solved
for this number of cores. The reported wall clock time includes: (1) Mesh generation; (2)
Generation of global FE space; (3) Assembly of distributed linear system; (4) Interpolation of a
manufactured solution; (5) Computation of the residual (includes a matrix-vector product) and
its norm. Note that the linear solver time (GAMG built-in solver in PETSc) was not included
in the total computation time as it is actually external to GridapDistributed.

Figure 2: Strong (left) and weak (right) scaling of GridapDistributed when applied to 3D Poisson
problem on the Australian Gadi@NCI supercomputer.

Figure 2 shows, on the one hand, an efficient reduction of computation times with increasing
number of cores, even far beyond a relatively small load of 25K DoFs per CPU core. On the
other hand, an asymptotically constant time-to-solution (i.e., perfect weak scaling) when the
number of cores is increased in the same proportion of global problem size with a local problem
size of 32x32x32 trilinear FEs.

Demo application
To highlight the ability of GridapDistributed and associated packages (see Figure 1) to tackle
real-world problems, and the potential behind its composable architecture, we consider a demo
application with interest in the geophysical fluid dynamics community. This application solves
the so-called non-linear rotating shallow water equations on the sphere, i.e., a surface PDE
posed on a two-dimensional manifold immersed in three-dimensional space. This complex
system of PDEs describes the dynamics of a single incompressible thin layer of constant density
fluid with a free surface under rotational effects. It is often used as a test bed for horizontal
discretisations with application to numerical weather prediction and ocean modelling. We in
particular considered the synthetic benchmark proposed in (Galewsky et al., 2016), which is
characterized by its ability to generate a complex and realistic flow.

For the geometrical discretization of the sphere, the software uses the so-called cubed sphere
mesh (Ronchi et al., 1996), which was implemented using GridapP4est. The spatial discretiza-
tion of the equations relies on GridapDistributed to build a compatible set of FE spaces
(Gibson et al., 2019) for the system unknowns (fluid velocity, fluid depth, potential vorticity
and mass flux) grounded on Raviart-Thomas and Lagrangian FEs defined on the manifold
(Rognes et al., 2013). Compatible FEs are advanced discretization techniques that preserve
at the discrete level physical properties of the continuous equations. In order to stabilize the
spatial discretization we use the most standard stabilization method in the geophysical flows
literature, namely the so-called Anticipated Potential Vorticity Method (APVM) (Rognes et al.,
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2013). We stress that other stabilisation techniques, e.g., Streamline Upwind Petrov–Galerkin
(SUPG)-like methods, have also been implemented with these tools (Lee et al., 2022). Time
integration is based on a fully-implicit trapezoidal rule, and thus a fully-coupled nonlinear
problem has to be solved at each time step. In order to solve this nonlinear problem, we
leveraged a Newton-GMRES solver preconditioned with an algebraic preconditioner provided
by GridapPETSc (on top of PETSc 3.16). The exact Jacobian of the shallow water system
was computed/assembled at each nonlinear iteration.

Figure 3 shows the magnitude of the vorticity field after 6.5 simulation days (left) and the
results of a strong scaling study of the model on the Australian Gadi@NCI supercomputer
(right). The spurious ringing artifacts in the magnitude of the vorticity field are well-known
in the APVM method at coarse resolutions and can be corrected using a more effective
stabilization method, such as, e.g., SUPG-like stabilization (Lee et al., 2022). The reported
times correspond to the total wall time of the first 10 time integration steps; these were the
only ones (out of 3600 time steps, i.e., 20 simulation days with a time step size of 480 secs.)
that we could afford running for all points in the plot due to limited computational budget
reasons. We considered two different problem sizes, corresponding to 256x256 and 512x512
quadrilaterals/panel cubed sphere meshes, resp. We stress that the time discretization is fully
implicit. Thus we can afford larger time step sizes than with explicit methods. Besides, the
purpose of the experiment is to evaluate the scalability of the framework, and not necessarily
to obtain physically meaningful simulation results. Overall, Figure 3 confirms a remarkable
ability of the ecosystem of Julia packages at hand to efficiently reduce computation times with
increasing number of CPU cores for a complex, real-world computational model.

Figure 3: Magnitude of the vorticity field after 6.5 simulation days with a coarser 48x48 quadrilater-
als/panel cubed sphere mesh (left) and strong scaling (right) of the non-linear rotating shallow water
equations solver on the Australian Gadi@NCI supercomputer.
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