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Summary
hessQuik is a lightweight software library for fast computation of second-order derivatives
(Hessians) of composite functions (that is, functions formed via compositions) with respect to
their inputs. The core of hessQuik is the efficient computation of analytical Hessians with GPU
acceleration. hessQuik is a PyTorch (Paszke et al., 2019) package that is user-friendly and
easily extendable. The repository includes a variety of popular functions and layers, including
residual layers and input convex layers, from which users can build complex models through
composition. hessQuik layers are designed for ease of composition - users only need to select
the layers and the package provides a convenient wrapper to compose the functions properly.
Each layer provides two modes for derivative computation and the mode is automatically
selected to maximize computational efficiency. hessQuik includes easy-access, illustrative
tutorials on Google Colaboratory (Bisong, 2019), reproducible experiments, and unit tests to
verify implementations. hessQuik enables users to obtain valuable second-order information
for their models simply and efficiently.

Statement of need
Deep neural networks (DNNs) and other composition-based models have become a staple
of data science, garnering state-of-the-art results in, e.g., image classification and speech
recognition (Goodfellow et al., 2016), and gaining widespread use in the scientific community,
particularly as surrogate models to replace expensive computations (Anirudh et al., 2020). The
unrivaled universality and success of DNNs is due, in part, to the convenience of automatic
differentiation (AD) which enables users to compute derivatives of complex functions without
an explicit formula. Despite being a powerful tool to compute first-order derivatives (gradients),
AD encounters computational obstacles when computing second-order derivatives.

Knowledge of second-order derivatives is paramount in many growing fields, such as physics-
informed neural networks (PINNs) (Raissi et al., 2019), mean-field games (Ruthotto et al.,
2020), generative modeling (Ruthotto & Haber, 2021), and adversarial learning (Papernot
et al., 2016). In addition, second-order derivatives can provide insight into the optimization
problem solved to build a good model (O’Leary-Roseberry & Ghattas, 2020). Hessians are
notoriously challenging to compute efficiently with AD and cumbersome to derive and debug
analytically. Hence, many algorithms approximate Hessian information, resulting in sub-optimal
performance. To address these challenges, hessQuik computes Hessians analytically and
efficiently with an implementation that is accelerated on GPUs.
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hessQuik Building Blocks
hessQuik builds complex functions constructed through composition of simpler functions,
which we call layers. The package uses the chain rule to compute Hessians of composite
functions, assuming the derivatives of the layers are implemented analytically. We describe the
process mathematically.

Let f : Rn0 → Rn` be a twice continuously-differentiable function defined as

f = g` ◦ g`−1 ◦ · · · ◦ g1, where gi : Rni−1 → Rni for i = 1, . . . , `. (1)

Here, gi represents the i-th layer and ni is the number of hidden features on the i-th layer.
We call n0 the number of input features and n` the number of output features. We note that
each layer can be parameterized by weights which we can tune by solving an optimization
problem. Because hessQuik computes derivatives for the network inputs, we omit the weights
from our notation.

Implemented hessQuik Layers
hessQuik includes a variety of popular layers and their derivatives. These layers can be
composed to form complex models. Each layer incorporates a non-linear activation function,
σ : R → R, that is applied entry-wise. The hessQuik package provides several activation
functions, including Sigmoid, Hyperbolic Tangent, and Softplus. Currently supported layers
include the following:

• singleLayer: This layer consists of an affine transformation followed by pointwise
non-linearity

gsingle(u) = σ(Ku + b) (2)

where K and b are a weight matrix and bias vector, respectively, that can be tuned
through optimization methods. Multilayer perceptron neural networks are built upon
these layers.

• residualLayer: This layer differs from a single layer by including a skip connection

gresidual(u) = u + hσ(Ku + b) (3)

where h > 0 is a step size. Residual layers are the building blocks of residual neural
networks (ResNets) (He et al., 2016). ResNets can be interpreted as discretizations of
differential equations or dynamical systems (E, 2017; Haber & Ruthotto, 2017).

• ICNNLayer: The input convex neural network layer preserves convexity of the composite
function with respect to the input features. Our layer follows the construction of (Amos
et al., 2017).

• quadraticLayer, quadraticICNNLayer: These are layers that output scalar values and
are typically reserved for the final layer of a model.

The variety of implemented layers and activation functions makes the task of designing a wide
range of hessQuik models easy.

Computing Derivatives with hessQuik

In hessQuik, we offer two modes, forward and backward, to compute the gradient ∇u0
f and

the Hessian ∇2
u0
f of the function with respect to the input features. The cost of computing

derivatives in each mode differs and depends on the number of input and output features.
hessQuik automatically selects the least costly method by which to compute derivatives. We
briefly describe the derivative calculations using the two methods.
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First, it is useful to express the evaluation of f as an iterative process. Let u0 ∈ Rn0 be a
vector of input features. Then, the function evaluated at u0 is

u1 = g1(u0) ∈ Rn1 (4)
u2 = g2(u1) ∈ Rn2 (5)

...
f(u0) ≡ u` = g`(u`−1) ∈ Rn` (6)

where ui are the hidden features on layer i for i = 1, . . . , `− 1 and u` are the output features.

Forward Mode
Computing derivatives in forward mode means building the gradient and Hessian during forward
propagation; that is, when we form ui, we simultaneously form the corresponding gradient and
Hessian information. We start by computing the gradient and Hessian of the first layer with
respect to the inputs; that is,

∇u0u1 = ∇u0g1(u0) ∈ Rn0×n1 (7)
∇2

u0
u1 = ∇2

u0
g1(u0) ∈ Rn0×n0×n1 (8)

We compute the derivatives of subsequent layers using the following mappings for i = 1, . . . , `−1

∇u0ui+1 = ∇u0ui∇uigi+1(ui) ∈ Rn0×ni+1 (9)
∇2

u0
ui+1 = ∇2

ui
gi+1(ui)×1 ∇u0ui ×2 ∇u0u>

i

+∇2
u0

ui ×3 ∇ui
gi+1(ui) ∈ Rn0×n0×ni+1 (10)

where ×k is the mode-k product (Kolda & Bader, 2009) and ∇u0
u` ≡ ∇u0

f(u0) is the Hessian
we want to compute. The Hessian mapping in Equation 10 is illustrated in Figure 1. For
efficiency, we store ∇ui

gi+1(ui) when we compute the gradient and re-use this matrix to form
the Hessian. Notice that the sizes of the derivatives always depend on the number of input
features, n0.

Figure 1: Illustration of Hessian computation of ∇2
u0ui+1 in forward mode. Note that for the first

term, the gray three-dimensional array ∇uigi+1(ui) is treated as a stack of matrices. Then, the same
Jacobian matrix ∇u0ui is broadcast to each matrix in the stack, illustrated by the repeated cyan
matrices. In the second term, the green matrix ∇uigi+1(ui) is applied along the third dimension of the
magenta three-dimensional array, ∇u0ui. Both of these operations can be parallelized and accelerated
GPUs.

Backward Mode
Computing derivatives in backward mode is also known as backward propagation and is the
method by which automatic differentiation computes derivatives. The process works as follows:
We first forward propagate through the network without computing gradients or Hessians.
After we forward propagate, we build the gradient and Hessian starting from the output layer
and working backwards to the input layer. We start by computing derivatives of the final layer
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with respect to the previous features; that is,

∇u`−1
u` = ∇u`−1

g`(u`−1) ∈ Rn`−1×n` (11)
∇2

u`−1
u` = ∇2

u`−1
g`(u`−1) ∈ Rn`−1×n`−1×n` . (12)

We compute derivatives of previous layers using the following mappings for i = `− 1, . . . , 1:

∇ui−1
u` = ∇ui−1

gi(ui−1)∇ui
u` ∈ Rni−1×n` (13)

∇2
ui−1

u` = ∇2
ui

u` ×1 ∇ui−1
gi(ui−1)×2 ∇ui−1

gi(ui−1)
>

+∇2
ui−1

gi(ui−1)×3 ∇uiu` ∈ Rni−1×ni−1×n` . (14)

For efficiency, we re-use ∇ui−1
gi(ui−1) from the gradient computation to compute the Hessian.

Notice that the sizes of the derivatives always depend on the number of output features, n`.

Forward Mode vs. Backward Mode
The computational efficiency of computing derivatives is proportional to the number of input
features n0 and the number of output features n`. The heuristic we use is if n0 < n`, we
compute derivatives in forward mode, otherwise we compute derivatives in backward mode.
Our implementation automatically selects the mode of derivative computation based on this
heuristic. Users have the option to select their preferred mode of derivative computation if
desired.

Testing Derivative Implementations
The hessQuik package includes methods to test derivative implementations and corresponding
unit tests. The main test employs Taylor approximations; for details, see (Haber, 2014).

Efficiency of hessQuik

We compare the time to compute the Hessian of a neural network with respect to the input
features of three approaches: hessQuik (our AD-free method), PytorchAD which uses automatic
differentiation following the implementation in (Huang et al., 2021), and PytorchHessian

which uses the built-in Pytorch Hessian function.

We compare the time to compute the gradient and Hessian of a network with an input
dimension d = 2k where k = 0, 1, . . . , 10. We implement a residual neural network (He et al.,
2016) with the width is w = 16, the depth is d = 4, and various numbers of output features,
n`. For simplicity, the same network architecture is used for every timing test.

For reproducibility, we compare the time to compute the Hessian using Google Colaboratory
(Colab) Pro and provide the notebook in the repository. For CPU runtimes, Colab Pro uses
an Intel(R) Xeon(R) CPU with 2.20GHz processor base speed. For GPU runtimes, Colab Pro
uses a Tesla P100 with 16 GB of memory. We note that Colab allocates resources based on
availability, and hence exact quantitative reproducibility is not guaranteed. However, we expect
users to get qualitatively similar results when running on their own Colab instance or locally.

In Figure 2 and Figure 3, we compare the performance of three approaches to compute Hessians
of a neural network. In our experiments, we see faster Hessian computations using hessQuik

and noticeable acceleration on the GPU, especially for networks with larger input and output
dimensions. Specifically, Figure 2 shows that for a model with a scalar output, the timing using
the hessQuik implementation scales better with the number of input features than either of
the AD-based methods. Additionally, Figure 3 demonstrates that the hessQuik timings remain
relatively constant as the number of output features changes whereas the PytorchAD timings
significantly increase as the number of output features increases. Note that we only compare
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to PytorchAD for vector-valued outputs because PytorchHessian was noticeably slower for the
scalar case.

Figure 2: Average time over 10 trials to evaluate and compute the Hessian with respect to the input
features for one output feature (n` = 1). Solid lines represent timings on the CPU and dashed lines
are timings on the GPU. The circle markers are the timings obtained using hessQuik.

Figure 3: Average time over 10 trials to compute the Hessian with respect to the input features with
variable number of input and output features. Each row corresponds to a number of input features,
n0, each column corresponds to a number of output features, n`, and color represents the amount of
time to compute (in seconds).

Conclusions
hessQuik is a simple, user-friendly software library for computing second-order derivatives of
composite functions with respect to their inputs. This PyTorch package includes many popular
built-in layers, tutorial repositories, reproducible experiments, and unit testing for ease of use.
The implementation scales well in time with various input and output feature dimensions
and performance is accelerated on GPUs, notably faster than automatic-differentiation-based
second-order derivative computations. We hope the accessibility and efficiency of this package
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will encourage researchers to use and contribute to hessQuik in the future.
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