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Introduction
The Finite Element Method (FEM) is a powerful computation framework used to solve Partial
Differential Equations (PDEs) on arbitrary geometries. While physical systems behave in a
continuous manner (both in space and time), FEM solvers are able to model these dynamics
with a high fidelity by decomposing a physical model into a finite set of elements. Each element
supports a finite number of degrees of freedom, which are used to describe the behavior of the
system. This way, other mathematical tools, such as linear solvers, can be used to compute
highly accurate approximations of the continuous dynamics. Solutions are constructed such
that the PDE is satisfied along with some boundary conditions (on the border of the domain)
and some continuity conditions (between neighboring elements).

Some common PDEs include the Navier-Stokes equations, which characterize the behavior
of fluids, Schrödinger’s equation, which governs the evolution of quantum systems, and
Maxwell’s Equations, which are a macroscopic description of essentially all electromagnetic
phenomena. The ability to accurately and efficiently model these differential equations and
others is imperative to the success of many engineering projects and scientific endeavors. Most
of the technology that engineers are interested in developing has far exceeded the reach of
direct mathematical analysis, and thus computational tools such as FEM are used ubiquitously
to drive technological development forward.

As such, innovations in FEM have a direct impact on essentially all engineering disciplines. The
more efficient, accurate, and feature-rich we can make simulation tools, the more beneficial
they will be to industrial and scientific applications. This is the motivation behind academic
work in the field of FEM. The FEM_2D library is a Rust package that aims to enable further
research into a particular FEM innovation called Refinement-by-Superposition (RBS). The
related research papers (Corrado et al., 2021; Harmon et al., 2021) explore benefits of RBS
using the 2D Maxwell Eigenvalue Problem as an experimental test case.

FEM codes based on RBS differ from more traditional FEM codes in two primary ways: (1)
The discretization data structure supports a set of hierarchical trees of elements (a “forest”
data structure) rather than a “flat” set of elements. FEM_2D’s Mesh data structure aims to
expose a wide array of functionality for instantiating and manipulating a tree of elements
both with h- and p-refinements. Here, h-refinement refers to the improvement of the spatial
discretization by superimposing smaller elements over existing elements, and p-refinement
refers to the process of increasing the polynomial expansion order of the basis set associated
with a particular element. (2) The integration API, used to populate the system matrices,
supports inter-layer integration that can handle integrals of overlapping basis functions defined
on different layers of element trees. In traditional implementations, integrals are computed
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strictly on individual elements. FEM_2D contains all the necessary integration functionality to
solve the Maxwell Eigenvalue Problem or other H(curl) conforming problems.

In addition to the centrally important hp-refinement functionality, FEM_2D is supported by a
rich set of surrounding features. This includes two eigensolvers: a dense solver that is entirely
native to Rust, and a sparse solver implemented using an external C++ library. There is also
a solution plotting API, and an external Mesh plotting tool to assist in future research work
based on the FEM_2D Library.

Statement of Need
In some application domains such as high-frequency structure analysis, efficiently computing
FEM solutions over geometries with sharp edges or stark material discontinuities necessitates
hp-refinement (whether isotropic or anisotropic) because these situations tend to introduce
multi-scale solution behavior that is challenging to model with pure p- or pure h-refinements.
This motivates the use of solvers with combined hp-refinements where an initially coarse mesh
is progressively refined both spatially and in terms of polynomial expansion order. Within this
framework, at each refinement step, small-scale behavior is localized into smaller elements using
h-refinement, and modelling of higher-order behavior is improved using p-refinements. When
intelligently applied to problems with sharp or singular solutions, combined hp-refinements can
achieve exponential rates of convergence, where h- or p-refinements alone would only be able
to achieve algebraic convergence. FEM_2D exposes an hp-refinement API that can be used to
achieve such results (Harmon et al., 2021).

Within the class of hp-refinements, the addition of anisotropic hp-refinements (over isotropic
ones) presents a larger capacity for solution efficiency, as small-scale behavior can be targeted
more directly and ineffectual Degrees of Freedom (DoFs) can be left out of the system (Corrado
et al., 2021). In other words, these directionally specific refinements can reduce the introduction
of superfluous entropy into the system by directly targeting inaccuracies that are specific to
only one direction. The resultant improvement in per-DoF efficiency can be used to reduce
the memory requirements for a given solution accuracy or to increase the accuracy achievable
with a given amount of memory. Thus, providing a feature-rich anisotropic hp-refinement API
is an additional goal of the FEM_2D library.

FEM_2D aims to expose some features similar to those in other FEM libraries such as Deal.II
(Arndt et al., 2021) and MFEM (Anderson et al., 2021) that are designed to be general
purpose frameworks for implementing FEM codes. Although it is not nearly as feature-rich as
these libraries, FEM_2D’s hp-refinement API aims to provide the basic functionality needed to
iteratively solve challenging 2D FEM problems as described in the associated work (Corrado
et al., 2021, 2022; Harmon et al., 2021). These features will be discussed in detail in the
following sections. Additionally, FEM_2D differs from other common FEM libraries in that its
h-refinement functionality is built on a Refinement by Superposition (RBS) framework, whereas
most FEM libraries with support for h-refinement use Refinement by Replacement (RBR).

For research purposes, it can also be helpful to design software libraries that are straightforward
to use and understand. As such, we note that FEM_2D is available on Rust’s package manager
Cargo, making it straightforward to download, compile, and run using only a few commands.
It can also be included as a dependency in any Rust project in order to develop new code
on top of the library. Additionally, the RBS approach that underpins FEM_2D lends itself to a
desirable level of simplicity with respect to its h-refinement implementation. This is because
RBS is designed such that continuity conditions between neighboring elements are enforced by
construction: no explicit handling of hanging nodes is required. As such, some of the typical
difficulties with implementing h-refinements over quadrilateral elements for H(curl) or H(div)
conforming boundary conditions are avoided entirely. Our hope is that the straightforward
nature of the RBS approach will allow other researchers to easily contribute to FEM_2D, or to
use it as a starting point for software development in adjacent research.
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Features

hp-Refinement API:
FEM_2D’s most notable feature is its highly dynamic and expressive hp-refinement API. Notably,
FEM_2D supports n-irregular anisotropic h-refinement, meaning that elements can be refined
in each direction individually, and there is no limitation on the number of hanging nodes
introduced along an edge. As such, refinement algorithms built on top of FEM_2D do not have
to check that an h-refinement is valid before applying it, and no transition elements are needed
between regions of coarse and dense h-refinement. This level of freedom is facilitated by the
underlying RBS methodology. FEM_2D also supports anisotropic p-refinements, meaning that
the polynomial expansion orders of the Basis Functions associated with each element can be
modified separately in each direction. Lastly, there are various methods for querying properties
of individual elements and the relationships between them (adjacency/descendancy). Overall,
the Mesh Refinement API is intended to provide enough abstraction and feature-richness to
make the implementation of refinement algorithms, like those used in Corrado et al. (2022),
as straightforward and unencumbered as possible.

h-refinement:

It is important to note that there are three primary h-refinement types that are designated by
the HRef enum:

• T - isotropic: produces 4 child elements
• U - anisotropic in the u-direction: produces 2 child elements
• V - anisotropic in the v-direction: produces 2 child elements

There are also two sub-types associated with the U and V refinements that invoke a sub-
sequent anisotropic refinement on one of the two child elements in the opposite direction.
These are constructed by passing an additional optional index to the relevant constructors:
HRef::U(Some(child_index)) and HRef::V(Some(child_index)), where child_index must
be either 0 or 1.

Note that u and v represent the parametric x and y dimensions. Curvilinear elements are not
yet supported; thus these symbols can generally be considered to by synonymous with x and y

respectively.

It is also important to note that the global_h_refinement and h_refine_with_filter meth-
ods will only apply refinements to elements that are eligible for h-refinement (i.e., they must
be leaf elements and the length of each of their edges must be above a minimum thresh-
old). Alternatively, the methods that expose more explicit control (h_refine_elems and
execute_h_refinements) can return an error if one of the specified elements is not eligi-
ble for h-refinement. A detailed explanation of the possible error types is provided in the
documentation.

The following example depicts a variety of h-refinement methods that could be used to
manipulate a Mesh data structure:

use fem_2d::prelude::*;

use std::error::Error;

fn do_some_h_refinements(mesh_file_path: &str) -> Result<Mesh, Box<dyn Error>> {

let mut mesh = Mesh::from_file(mesh_file_path)?;

// isotropically h-refine all elems

mesh.global_h_refinement(HRef::T);

// anisotropically h-refine all elems connected to some target node
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let target_node_id = 5;

mesh.h_refine_with_filter(|elem| {

if elem.nodes.contains(&target_node_id) {

Some(HRef::u())

} else {

None

}

});

// anisotropically h-refine a list of elems by id

mesh.h_refine_elems(vec![3, 4, 8, 12], HRef::v())?;

// directly apply a list of refinements to the mesh

mesh.execute_h_refinements(vec![

(1, HRef::T),

(5, HRef::U(Some(0))),

(6, HRef::U(Some(1))),

(10, HRef::V(None)),

])?;

Ok(mesh)

}

p-refinement:

The following example shows how some of the p-refinement methods may be used. Here, the
Mesh is provided as an argument to the function rather than being loaded from a file. The
p-refinement objects are constructed from a static method on PRef using a pair of i8’s (8-bit
signed integers). As such, any element’s u- and v-directed expansion orders can be modified
independently in either the positive or negative direction.

The behavior of these methods is straightforward with the slight caveat that the
global_p_refinement and p_refine_with_filter methods will guard against any refinement
pushing an element outside of its valid expansion order range. Specifically, refinements are
clamped element-wise to ensure that the final expansion order is in the range [1, 20]. The
p-refinement methods that can return an error (those followed by a ? in the example) do not
exhibit this behavior. This is in keeping with the design of the h-refinement API in the sense
that methods with less explicit control are safer—and are intended for simpler use cases—while
the more explicit methods allow for failure and are intended for more advanced use.

use fem_2d::prelude::*;

fn do_some_p_refinements(mesh: &mut Mesh) -> Result<(), PRefError> {

// isotropically p-refine all elems (with a magnitude-2 refinement)

mesh.global_p_refinement(PRef::from(2, 2));

// positively p-refine all "leaf" elems (with a magnitude 1 refinement)

// negatively p-refine all other elems (with a magnitude -1 refinement)

mesh.p_refine_with_filter(|elem| {

if elem.has_children() {

Some(PRef::from(-1, -1))

} else {

Some(PRef::from(1, 1))

}

});
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// anisotropically p-refine a list of elems by id

mesh.p_refine_elems(vec![3, 4, 8, 12], PRef::from(4, 2))?;

// directly apply a list of refinements to the mesh

mesh.execute_p_refinements(vec![

(1, PRef::from(3, 2)),

(5, PRef::from(0, 1)),

(6, PRef::from(-1, -1)),

(10, PRef::from(4, -2)),

])?;

Ok(())

}

The Mesh data structure also has an alternative set of methods to modify expansion orders by
setting them directly rather than additively. These methods can be very useful in scenarios
where the current expansion orders are irrelevant, and elements require a specific expansion
order which is either known beforehand or computed ad-hoc. The following shows how this
API may be used in practice.

Here, both methods take an Orders object that specifies the expansion order in the u and v

directions. In the first method, try_new is used to construct an Orders. This can fail if the
expansion order specified is either 0 or greater than the maximum allowed expansion order:
MAX_POLYNOMIAL_ORDER. The second interface takes a closure which creates an Option<Orders>

for each element (in this example, the closure uses Orders::new which will panic when provided
with invalid expansion orders).

use fem_2d::prelude::*;

fn set_some_expansion_orders(mesh: &mut Mesh, order: u8) -> Result<(), PRefError> {

// set the expansion order on all elems to 'order'

mesh.set_global_expansion_orders(Orders::try_new(order, order)?);

// set the expansion orders to (4, 4) on all "leaf" elems

// set the expansion orders to (2, 2) on all base layer elems

// leave all other elems unchanged

mesh.set_expansions_with_filter(|elem| {

if !elem.has_children() {

Some(Orders::new(4, 4))

} else if elem.parent_id().is_none() {

Some(Orders::new(2, 2))

} else {

None

}

});

Ok(())

}

Problem Formulation and Solution
The following example shows how a simplified formulation of the Maxwell Eigenvalue Problem
maps to the corresponding code in the library. This is intended provide a general overview of
the libraries available functionality. It is not comprehensive, but does aim to provide a good
starting point.

The Maxwell eigenvalue problem has the following Continuous-Galerkin formulation for an
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arbitrary Domain terminated with Dirichlet boundary conditions, (constraining the solution to
TE modes only):

Find a solution:
U = {u, 𝜆} ∈ 𝐵ℎ𝑝 ×ℝ (1)

which satisfies:
𝑏(u, 𝜙) = 𝜆𝑎(u, 𝜙) ∀𝜙 ∈ 𝐵ℎ𝑝 (2)

where:
⎧{
⎨{⎩

𝐵ℎ𝑝 ⊂ 𝐻0(curl; Ω)
𝑎(u, 𝜙) = ⟨∇𝑡 × u,∇𝑡 × 𝜙⟩
𝑏(u, 𝜙) = ⟨u, 𝜙⟩

(3)

The Generalized Eigenvalue Problem is built from a Mesh with the following code. This example
assumes that mesh has already been refined to the desired state.

use fem_2d::prelude::*;

use rayon::prelude::*;

fn problem_from_mesh(mesh: Mesh) -> Result<GEP, GalerkinSamplingError> {

// Setup a global thread-pool for parallelizing Galerkin Sampling

rayon::ThreadPoolBuilder::new().num_threads(8).build_global().unwrap();

// Generate a Domain (Ω) from a Mesh with H(curl) Continuity Conditions

let domain = Domain::from(mesh, ContinuityCondition::HCurl);

// Compute a Generalized Eigenvalue Problem

let gep = galerkin_sample_gep_hcurl::<

HierPoly, // Basis Space

CurlCurl, // Stiffness Integral

L2Inner, // Mass Integral

>(&domain, Some([8, 8]))

}

The Domain structure represents the entire FEM domain, including the discretization and the
basis space that conforms to the provided continuity condition. (Only H(curl) is currently
implemented but a framework is in place for implementing H(div) and other continuity
conditions.)

Galerkin sampling is then executed in parallel over the Domain, yielding a Generalized Eigenvalue
Problem composed of two sparse matrices. The Domain and a Gauss-Legendre-Quadrature
grid size are provided as arguments. This function may also return an Error if the Galerkin
Sampling fails due to an ill-posed problem.

The three generic arguments – designated with the turbofish operator (::<>) – correspond to the
three lines of Equation 3. The basis space can be swapped for any other space that implements
the HierCurlBasisFnSpace Trait. HierPoly is a relatively simple implementation composed
of products of polynomial functions. A more sophisticated basis space: HierMaxOrtho can be
included using the max_ortho_basis Feature Flag. Custom Basis Spaces can also be created
by implementing the same Trait.

The CurlCurl and L2Inner integrals, which correspond to the Stiffness and Mass matrices
respectively, can be swapped for any other structure that implements the HierCurlIntegral

Trait. This generic interface allows users to leverage the Galerkin Sampling functionality
against other curl-conforming problems.1

1The provided functionality is obviously somewhat incomplete, as only Curl Conforming problems can be
solved; however, the library’s module-structure and trait-hierarchy provide a clear template for the analogous
H(div) implementation. There is also room for other Galerkin sampling and integration functionality associated
with alternate continuity conditions. These methods, structures, and traits would require additions to the Domain

structure, and few changes to the Mesh structure if any.
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The Generalized Eigenvalue Problem, can then be solved using one of the available solvers:

// Dense solution (not recommended for large problems)

let eigenpair = nalgebra_solve_gep(gep, target_eigenvalue).unwrap();

// OR: Sparse solution (requires external SLEPc solver)

let eigenpair = slepc_solve_gep(gep, target_eigenvalue).unwrap();

The dense solver, implemented using Nalgebra (“Nalgebra,” 2021), converts the eigenproblem’s
sparse matrices into dense matrices. This is an expensive operation, and should be avoided
for large problems. The sparse solver, implemented using SLEPc (Balay et al., 1997, 2021a,
2021b; Hernandez et al., 2005), is a direct interface to a generalized eigensolver. This is a
relatively fast operation, but requires an external solver to be installed and compiled. It also
avoids directly inverting the B-matrix, which is numerically advantageous for ill-conditioned
problems.

Both solvers look for the eigenvalue closest to the provided target_eigenvalue. They can
return errors if the solution does not converge. Upon success, the returned eigenpair contains
the eigenvalue nearest to the target, and the corresponding eigenvector with length equal to
the number of degrees of freedom in the domain.

Field Visualization
The Fields API exposes functionality to generate a solution-field using an eigenvector and
associated domain. It also allows functions of field solutions to be computed using basic
mathematical operations. The following example shows how electric field solutions are generated
and exported to a VTK file.

use fem_2d::prelude::*;

use std::error::Error;

fn compute_some_solution_fields(

eigenpair: EigenPair,

domain: &Domain

) -> Result<(), Box<dyn Error>> {

// build a solution field space

let mut field_space = UniformFieldSpace::new(domain, [16, 16]);

// compute the x and y directed electric fields

let [ex_name, ey_name] =

field_space.xy_fields::<HierPoly>("E", eigenpair.vector)?;

// compute the magnitude of the electric field

field_space.expression_2arg([&ex_name, &ey_name], "E_mag", |ex, ey| {

(ex.powi(2) + ey.powi(2)).sqrt()

})?;

// compute the absolute value of the x and y directed electric fields

field_space.map_to_quantity(ex_name, "E_x_abs", |e| e.abs())?;

field_space.map_to_quantity(ey_name, "E_y_abs", |e| e.abs())?;

// print E_x, E_y, E_x_abs, E_y_abs, and E_mag to a VTK file

field_space.print_all_to_vtk("path/to/file.vtk")

}

Here, we are using a UniformFieldSpace to define our solution space over the domain. This
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structure defines a grid of points such that the density is uniform across leaf-elements.2 Here,
we use a 16x16 grid. The parent elements will have a larger density because the leaf-element’s
points are projected “downwards” onto their ancestors. So, in this case, an element that has
four children (who are all leafs) would evaluate its local solution using a 32x32 point grid such
that the points align with the grids on its descendants.

On the following line, we compute the X- and Y-directed fields using the eigenvector (and the
same basis-space as before). The UniformFieldSpace maintains an internal table of solution
components designated by name. The names for the fields are returned from the xy_fields

method.

The next line uses the X- and Y-components to compute the magnitude of the electric field
using a two-argument expression. This solution component is stored in the provided name
"E_mag". We also compute the absolute value of both components.

Finally, the fields are exported to a VTK file for plotting. Multiple external tools are available
to generate high-quality plots from the VTK data. Figure 1 shows an electric field magnitude
generated using FEM_2D and VISIT.

Figure 1: Example of an Electric Field Magnitude of an Eigenfunction

2There is also a need for an implementation with densities proportional to the size of the elements. This
would be useful for generating images of the fields, as the overall point-density would be globally uniform across
the domain.
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