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Summary
A popular technique to cluster non-Euclidean data using arbitrary distance functions or
similarities is k-medoids. The k-medoids problem is NP-hard (Kariv & Hakimi, 1979), hence
we need an approximate solution. The standard algorithm for this is Partitioning Around
Medoids (PAM, Kaufman & Rousseeuw, 1987, 1990), consisting of a greedy initialization
(BUILD) followed by a local optimization (SWAP). Alternatively, a k-means-style alternating
optimization can be employed (Maranzana, 1963; Park & Jun, 2009), but this tends to produce
worse results (Reynolds et al., 2006; Rosing et al., 1979; Teitz & Bart, 1968).

FasterPAM (Schubert & Rousseeuw, 2019, 2021) recently introduced a speedup for larger k, by
exploiting redundancies when computing swaps for all k existing medoids. Originally FasterPAM
was implemented in Java and published within the open-source library ELKI (Schubert &
Zimek, 2019).

Here, we introduce the kmedoids Rust crate (https://github.com/kno10/rust-kmedoids) along
with a Python wrapper package kmedoids (https://github.com/kno10/python-kmedoids) to
make this fast algorithm easier to employ by researchers in various fields. We implemented
the FasterPAM approach, the original PAM, and the “Alternating” (k-means-style) approach.
The implementation can be used with arbitrary dissimilarities and distances, as it requires a
dissimilarity matrix as input.

Statement of need
To make the recent algorithmic improvements to k-medoids clustering available to a wider
audience, we made an easy to use package available to the Rust and Python communities, to
enable researchers to easily explore k-medoids clustering on their data sets, which so far is not
available for example in the popular package scikit-learn (we include a compatible API).

We chose Rust for the core functionality because of its high reliability, security, and performance,
and a Python wrapper for ease of use. Both parts are documented following community best
practice and available online at https://docs.rs/kmedoids respectively https://python-kmedoids.
readthedocs.io. We tried to keep library dependencies to a minimum, and some dependencies
(e.g., rayon for optional parallelization) can be disabled via the Rust “feature” functionality.
For efficiently sharing data from Python to Rust, we rely on the well-known numpy/ndarray
pairing to avoid copying data.

Performance
The original FasterPAM prototype was implemented in Java and made available as part of the
ELKI open-source toolkit (Schubert & Zimek, 2019). Java often is not the best choice for a
numerically heavy computation, to a large extent due to memory management; but it usually
is still much faster than interpreted “pure’’ Python or R code (which can shine when used to
drive compiled library code written, e.g., in C, Fortran, or Rust). To demonstrate the benefits
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of this new Rust implementation, we compare it to the original Java version (written by the
same authors), and also study the additional speedup that can be obtained by parallelization
using multiple threads.

We use the first N instances of the well-known MNIST data set. As the run times are expected
to be quadratic in the number of instances, we report run times normalized by N² averaged
over 25 restarts on an AMD EPYC 7302 processor with up to 16 threads for Rust. Even
without parallelization, the FasterPAM in Rust with 4.48 ns per N², is about 4 times less than
the original Java FasterPAM implementation with 21.04 ns per N². We primarily attribute
this to being able to use a better memory layout than currently possible in Java (Project
Valhalla’s value types may eventually help). Using two threads in Rust, we achieve a 34%
faster calculation with 2.95 ns per N², but we see diminishing returns when further increasing
the number of threads for this data set size, caused by the overhead and synchronization cost.
For small data sets, using a single thread appears beneficial, and the Python wrapper defaults
to this for small data sets.

Figure 1: Results normalized by N² on MNIST data with k=10.

Comparison of Algorithms
Many existing libraries only implement the (worse) alternating algorithm, or the (slower)
original PAM algorithm. We want to show that using this package makes it easy to find better
solutions in less time. In practice, it is feasible to run multiple random restarts of FasterPAM,
because the run time of the optimization is usually smaller than the time needed to compute
the (reusable) distance matrix. Nevertheless, computing the distance matrix needs O(N²) time
and memory, making the algorithm only a good choice for less than 100,000 instances (for
large data sets, it likely is reasonable to use subsampling).

We compare our implementation with alternative k-medoids implementations and algorithms:
sklearn_extra.cluster.KMedoids (v0.2.0, Mathieu et al., 2020), PyClustering (v0.10.1.2,
Novikov, 2019), biopython (v1.79, Cock et al., 2009), and BanditPAM (v3.0.2, Tiwari et al.,
2020).

Our implementations (via the Python wrapper) are the fastest for all algorithms (PAM,
Alternating, and FasterPAM). As expected, the “Alternating” algorithm shows a significantly
worse loss than PAM and FasterPAM in all implementations; while PAM has a substantially
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worse run time than FasterPAM and Alternating. FasterPAM achieves a similar loss to PAM
(the measured differences are due to random initialization) at the shortest run time.

Table 1: Results on first 10000 MNIST instances with k = 10.

implementation algorithm language
ns per
N² average loss

kmedoids FasterPAM Python, Rust 5.53 18755648
ELKI FasterPAM Java 17.81 18744453
kmedoids Alternating Python, Rust 8.91 19238742
ELKI Alternating Java 12.80 19238868
sklearn_extra Alternating Python 13.44 19238742
biopython Alternating Python, C 13.68 19702804
kmedoids PAM Python, Rust 212.34 18780639
ELKI PAM Java 787.55 18764896
sklearn_extra PAM Python 1506.52 18755237
PyClustering PAM Python, C++ 76957.64 18753892

Because BanditPAM cannot handle precomputed distance matrices, we evaluate BanditPAM
separately, including the run time for the distance computations. On average, for MNIST 5000,
10000, 15000, and 20000 samples, BanditPAM was 55 times slower than FasterPAM in Rust.
While BanditPAM claims “almost linear run time” (Tiwari et al., 2020), whereas FasterPAM
has quadratic run time, BanditPAM appears to have substantial overhead,1 and a break-even
point likely is beyond 500000 samples for MNIST (a size where the memory consumption of
the distance matrix makes a stored-distances approach prohibitive to use).

Conclusions
We provide a fast Rust implementation of the FasterPAM algorithm, with optional parallelization,
and an easy-to-use Python wrapper. K-medoids clustering is a useful clustering algorithm in
many domains where the input data is not continuous, and where Euclidean distance is not
suitable, and with these packages, we hope to make this algorithm easier accessible to data
scientists in various fields, while the source code helps researchers in data mining to further
improve clustering algorithms.
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