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Summary
River and Basin Profiler (rabpro) is a Python package to delineate watersheds, extract river
flowlines and elevation profiles, and compute watershed statistics for any location on the
Earth’s surface. As fundamental hydrologically-relevant units of surface area, watersheds are
areas of land that drain via aboveground pathways to the same location, or outlet. Delineations
of watershed boundaries are typically performed on digital elevation models (DEMs) that
represent surface elevations as gridded rasters. Depending on the resolution of the DEM and
the size of the watershed, delineation may be very computationally expensive. With this in
mind, we designed rabpro to provide user-friendly workflows to manage the complexity and
computational expense of watershed calculations given an arbitrary coordinate pair. In addition
to basic watershed delineation, rabpro will extract the elevation profile for a watershed’s main-
channel flowline. This enables the computation of river slope, which is a critical parameter
in many hydrologic and geomorphologic models. Finally, rabpro provides a user-friendly
wrapper around Google Earth Engine’s (GEE) Python API to enable cloud-computing of zonal
watershed statistics and/or time-varying forcing data from hundreds of available datasets.
Altogether, rabpro provides the ability to automate or semi-automate complex watershed
analysis workflows across broad spatial extents.
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Figure 1: The core functionality of rabpro demonstrated on the Sigatoka River. (A) Study site
with both MERIT and HydroBASINS delineations and river flowline extraction for a hypothetical
gage station. Bing VirtualEarth base image. (B) MERIT-Hydro delineation with MERIT-Hydro
flowlines underneath. (C) HydroBASINS delineation with level-12 HydroBASINS polygons as white
outlines. (D) Extracted elevation profile with gage location denoted by white circle at Distance =
0. (E) Examples of time-averaged (where appropriate) basin characteristics retrieved by rabpro from
Google Earth Engine. Data sources are: population (CIESIN, 2017), NDVI (Didan, 2015), topo slope
(Amatulli et al., 2020), precipitation (GPM, 2019), soil moisture (ONeill et al., 2018), and temperature
(Copernicus, 2017). (F, G) Basin-averaged time-series data fetched by rabpro for the temperature and
precipitation datasets in (E).

Statement of Need
Watersheds play a central and vital role in many scientific, engineering, and environmental
management applications (See Brooks (2003) for a comprehensive overview). While rabpro

can benefit any watershed-based research or analysis, it was designed to satisfy the needs of
data-driven rainfall-runoff models. These models aim to predict streamflow (runoff) time series
as a function of precipitation over upstream land area (i.e. the watershed). In addition to
watershed delineations and precipitation estimates, they typically require data on both time-
varying parameters (or forcing data) like temperature, humidity, soil moisture, and vegetation
as well as static watershed properties like topography, soil type, or land use/land cover (Gauch
et al., 2021; Kratzert et al., 2019, 2021; Nearing et al., 2021). The rabpro API enables users
to manage the complete data pipeline necessary to drive such a model starting from the initial
watershed delineation through the calculation of static and time-varying parameters. Some
hydrologic and hydraulic models also require channel slope for routing streamflow (Boyle et
al., 2001; Piccolroaz et al., 2016; Wilson et al., 2008), developing rating curves (Colby, 1956;
Fenton & Keller, 2001), or modeling local hydraulics (Schwenk et al., 2017, 2015; Schwenk &
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Foufoula‐Georgiou, 2016).

The need for watershed-based data analysis tools is exemplified by the growing collection of
published datasets that provide watershed boundaries, forcing data, and/or watershed attributes
in precomputed form, including CAMELS (Addor et al., 2017), CAMELS-CL, -AUS, and -BR
(Alvarez-Garreton et al., 2018; Chagas et al., 2020; Fowler et al., 2021), Hysets (Arsenault et
al., 2020), and HydroAtlas (Linke et al., 2019). These datasets provide off-the-shelf options
for building streamflow models, but they suffer from a degree of inflexibility. For example,
someone desiring to add a watershed attribute, to use a new remotely-sensed data product,
or to update the forcing data time-series to include the most recently available data must
go through the arduous process of sampling it themselves. rabpro was designed to provide
flexibility for both building a watershed dataset from scratch or appending to an existing one.

While we point to streamflow modeling as an example, many other applications exist. rabpro is
currently being used to contextualize streamflow trends, build a data-driven model of riverbank
erosion, and generate forcing data for a mosquito population dynamics model. rabpro’s
focus is primarily on watersheds, but some users may also find rabpro’s Google Earth Engine
wrapper convenient for sampling raster data over any geopolygon(s). For example, Earth
System Models commonly require sampling raster datasets over watersheds or other polygons
for parameterizations and validations (Chen et al., 2020; Fisher et al., 2019).

State of the field
The importance of watersheds, availability of DEMs, and growing computational power has led
to the development of many excellent open-source terrain (DEM) analysis packages that provide
watershed delineation tools, including TauDEM (Tarboton, 2005), pysheds (Bartos, 2020),
Whitebox Tools (Lindsay, 2016), SAGA (Conrad et al., 2015), among many others. Computing
statistics and forcing data from geospatial rasters also has a rich history of development, and
Google Earth Engine (Gorelick et al., 2017) has played an important role. Almost a decade
has passed since Google Earth Engine has been available to developers, and the community
has in-turn developed open-source packages to interface with its Python API in user-friendlier
ways, including gee_tools (Principe, 2021), geemap (Wu, 2020), eemont (Montero, 2021),
and restee (Markert, 2021)–each of which provides support for sampling zonal statistics and
time series from geospatial polygons.

However, to our knowledge, rabpro is the only available package that provides efficient end-
to-end delineation and characterization of watershed basins at scale. While a combination
of the cited terrain analysis packages and GEE toolboxes can achieve rabpro’s functionality,
rabpro’s blending of them enables simpler, less error-prone, and faster results.

One unique rabpro innovation is its automation of “hydrologically addressing” input coordinates.
DEM watershed delineations require that the outlet pixel be precisely specified; in many rabpro

use cases, this is simply a (latitude, longitude) coordinate that may not align with the
underlying DEM. rabpro will attempt to “snap” the provided coordinate to a nearby flowline
while minimizing the snapping distance and the difference in upstream drainage area (if provided
by the user). Another unique rabpro feature is the ability to optimize the watershed delineation
method according to basin size such that pixel-based (from MERIT-Hydro (Yamazaki et al.,
2019)) delineations can be used for more accurate estimates and/or smaller basins, and coarser
subbasin-based (from HydroBASINS (Lehner & Grill, 2014)) delineations can be used for rapid
estimates of larger basins.

Functionality
rabpro executes watershed delineation based on either the MERIT-Hydro dataset, which
provides a global, ~90 meter per pixel, hydrologically-processed DEM suite, or the HydroBASINS
data product, which provides pre-delineated subbasins at approximately ~230 km^2 per
subbasin. Conceptually, basin delineation is identical for both. The user-provided coordinate is
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hydrologically addressed by finding the downstream-most pixel (MERIT-Hydro) or subbasin
(HydroBASINS). The watershed is then delineated by finding all upstream pixels or subbasins
that drain into the downstream pixel/subbasin and taking the union of these pixels/subbasins to
form a single polygon. A user must therefore download either the MERIT-Hydro tiles covering
their study watershed or the appropriate HydroBASINS product; rabpro provides tooling to
automate these downloads and create its expected data structure (See the Downloading data
notebook). rabpro does not currently provide support for custom watershed datasets similar to
HydroBASINS due to attribute field and data structure requirements that must be consistent
for generalizability.

There are three primary operations supported by rabpro: 1) basin delineation, 2) elevation
profiling, and 3) subbasin (zonal) statistics. If operating on a single coordinate pair, the
cleanest workflow is to instantiate an object of the profiler class and call (in order) the
delineate_basins(), elev_profile(), and basin_stats() methods (See the Basic Example
notebook). If operating on multiple coordinate pairs, the workflow is to loop through each
coordinate pair while delineating each watershed (optionally calculating its elevation profile).
As the loop runs, the user collects each basin polygon in a list, concatenates the list, and
directly calls basin_stats.compute() on the resulting GeoDataFrame (See the Multiple Basins
Example notebook). More details on package functionality can be found in the documentation.

Figure 2: rabpro can return statistics for multiple polygons with a single call. Here, dam-associated
(Prior et al., 2022) watersheds in Sri Lanka are delineated and zonal statistics are run for water
occurrence, temperature, and precipitation.

Dependencies
rabpro relies on functionality from the following Python packages: GDAL (GDAL/OGR
contributors, 2020), NumPy (Harris et al., 2020), GeoPandas (Jordahl et al., 2020), Shapely
(Gillies & others, 2007), pyproj (Snow et al., 2021), scikit-image (Van der Walt et al., 2014),
scipy (Virtanen et al., 2020), and earthengine-api (Gorelick et al., 2017). Use of the watershed
statistics methods requires a free Google Earth Engine account. Required MERIT-Hydro and
HydroBASINS data are freely available for download by visiting their websites or using rabpro’s
download scripts; MERIT-Hydro requires users to first register to receive a username and
password for access to downloads.
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