
swift-emulator: A Python package for emulation of
simulated scaling relations
Roi Kugel∗1 and Josh Borrow†2

1 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands 2
Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

DOI: 10.21105/joss.04240

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey
Reviewers:

• @JDonaldM
• @kstoreyf

Submitted: 28 January 2022
Published: 12 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
swift-emulator is a Python toolkit for using Gaussian processes machine learning to emulate
scaling relations from cosmological simulations. swift-emulator focusses on implementing a
clear, easy to use design and API to remove the barrier to entry for using emulator techniques.
swift-emulator provides tools for every step: the design of the parameter sampling, the
training of the Gaussian process model, and validating and anaylsing the trained emulators.
By making these techniques easier to use, in particular in combination with the SWIFT code
(Borrow & Borrisov, 2020; Schaller et al., 2018), it will be possible use fitting methods (like
MCMC) to calibrate and better understand theoretical simulation models.

Statement of need
One of the limits of doing cosmological (hydrodynamical) simulations is that any simulation is
limited to only a single set of parameters, be these choices of cosmology, or the implemented
physics (e.g., stellar feedback). These parameters need to be tuned to calibrate against
observational data. At odds with this, cosmological simulations are computationally expensive,
with the cheapest viable runs costing thousands of CPU hours, and running up to tens of
millions for the largest volumes at the highest resolutions. This makes the use of cosmological
simulations in state-of-the-art fitting pipelines (e.g., MCMC), where tens of thousands to
millions of evaluations of the model are required to explore the parameter space, computationally
unfeasable. In order to get a statistical grip on the models of cosmology and galaxy formation,
a better solution is needed.

This problem is a major limiting factor in “calibration” of the sub-resolution (subgrid) models
that are often used. Works like Illustris (Vogelsberger et al., 2014), EAGLE (Crain et al., 2015),
BAHAMAS (McCarthy et al., 2017), and Illustris-TNG (Pillepich et al., 2018) are able to
“match” observed relations by eye, but a statistical ground for the chosen parameters is missing.
This poses a signifcant problem for cosmology, where a deeper understanding of our subgrid
models will be required to interpret results from upcoming surveys like LSST and EUCLID.

A solution here comes through the use of machine learning techniques. Training ‘emulators’
on a limited amount of simulations enables the evaluation of a fully continuous model based
on changes in the underlying parameters. Instead of performing a new simulation for each
required datapoint, the emulator can predict the results a simulation would give for that set of
parameters. This makes it feasable to use methods like MCMC based purely on simulation
results.

∗co-first author
†co-first author

Kugel, & Borrow. (2022). swift-emulator: A Python package for emulation of simulated scaling relations. Journal of Open Source Software,
7(72), 4240. https://doi.org/10.21105/joss.04240.

1

https://doi.org/10.21105/joss.04240
https://github.com/openjournals/joss-reviews/issues/4240
https://github.com/SWIFTSIM/emulator
https://doi.org/10.5281/zenodo.6447216
https://dfm.io
https://github.com/JDonaldM
https://github.com/kstoreyf
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04240


Emulator Requirements
For emulation in hydro simulations we want to use Gaussian processes to emulate scaling
relations in the following form:

GP (y, x, ~θ).

We want to emulate scaling relations between a dependent variable y, as a function of the
independent variable x and the model parameters ~θ. For each simulation many of these
individual scaling relations can be calculated, for example the sizes of galaxies relative to their
stellar mass, or the mass fraction of gas in galaxy clusters as a function of their mass. The
individual object properties used in scaling realtions can be measured from each individual
simulation using a tool like VELOCIraptor (Elahi et al., 2019).

Between simulations, the underlying parameters ~θ can change, for instance the energy injected
by each supernovae. Using an emulator, we want to be able to see how many scaling relations
change as a function of these parameters like the supernova strength.

Emulators do not make a distinction between the independent x and the model parameters
~θ. An emulator will model y as a function of the combined vector ~θ′ = (x, ~θ). Getting the
training data in the correct format can pose a significant challenge.

In order to save computational time, it is important to have an efficient sampling of the
parameter space represented by ~θ. It may be more efficient to search the parameter space in
a transformed coordinate space, like logarithmic space, if the expected viable range is over
several orders of magnitude.

Once the emulator is working it can be challenging to perform standard tests to validate it.
Things like cross-checks or parameter sweeps have to be implemented by hand, making proper
use of emulators more difficult.

Why swift-emulator?
Many packages exist for Gausian process emulation, like george (Ambikasaran et al. (2015);
this provides the basis for swift-emulator), gpytorch (Gardner et al., 2018) and GPy (GPy,
since 2012). Additionally, a package like pyDOE (Baudin et al., 2012) can be used to set up
efficient parameter samplings. However, most of these packages operate close to theory, and
create a significant barrier for entry.

With swift-emulator we aim to provide a single python package that interfaces with available
tools at a high level. Additionaly we aim to streamline the processes by providing i/o tools
for the SWIFT simulation code (Borrow & Borrisov, 2020; Schaller et al., 2018). This is
done in a modular fashion, giving the users the freedom to change any steps along the way.
swift-emulator provides many methods that work out of the box, removing the barrier
to entry, and aim at making emulator methods easy to use. The more wide-spread use of
emulators will boost the potential of future simulation projects.

swift-emulator combines these tools to streamline the complete emulation process. There
are tools for experimental design, such as producing latin hypercubes or uniform samplings of
n-dimensional spaces. For simulations performed with SWIFT, parameter files can be created
and simulation outputs can be loaded in through helper methods in the library. The results
can then be used to train an emulator that can make predictions for the scaling relations
in the simulation. There are also methods to perform cross-checks to find the accuracy of
the emulator. In addition, for investigating the impact of individual parameters on a given
scaling relation, there is a simple method to do a parameter sweep implemented. Finally, there

Kugel, & Borrow. (2022). swift-emulator: A Python package for emulation of simulated scaling relations. Journal of Open Source Software,
7(72), 4240. https://doi.org/10.21105/joss.04240.

2

https://doi.org/10.21105/joss.04240


are tools for comparing the emulated relations with other data, from a simple χ2 method to
complex model discrepancy structures.

swift-emulator is currently being used for two of the flagship simulation projects using the
SWIFT simulation code, ranging across five orders of magnitude in mass resolution. The
package is being used to allow modern simulations to reporduce key observations with high
accuracy.

Finally swift-emulator has many options to optimise the methods for specific emulation
problems. While the focus so far has been on integration with SWIFT, the underlying API is
structured in a simple enough way that using the emulator with a different simulation code is
easy. swift-emulator is currently being used for simulation projects outside of the SWIFT
project for the calibration of postprocessing models.

Acknowledgements
We acknowledge support from the SWIFT collaboration whilst developing this project, with
notable involvement from Richard Bower, Ian Vernon, Joop Schaye, and Matthieu Schaller. This
work is partly funded by Vici grant 639.043.409 from the Dutch Research Council (NWO). This
work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology
on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by
BEIS capital funding via STFC capital grants ST/K00042X/1, ST/P002293/1, ST/R002371/1
and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1. DiRAC is
part of the National e-Infrastructure.

References
Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O’Neil, M. (2015).

Fast Direct Methods for Gaussian Processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38, 252. https://doi.org/10.1109/TPAMI.2015.2448083

Baudin, M., Christopoulou, M., Collette, Y., & Martinez, J.-M. (2012). pyDOE: The experi-
mental design package for Python. In GitHub repository. GitHub. https://github.com/
tisimst/pyDOE

Borrow, J., & Borrisov, A. (2020). swiftsimio: A Python library for reading SWIFT data. The
Journal of Open Source Software, 5(52), 2430. https://doi.org/10.21105/joss.02430

Crain, R. A., Schaye, J., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C.,
Frenk, C. S., McCarthy, I. G., Helly, J. C., Jenkins, A., Rosas-Guevara, Y. M., White, S. D.
M., & Trayford, J. W. (2015). The EAGLE simulations of galaxy formation: calibration of
subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society,
450(2), 1937–1961. https://doi.org/10.1093/mnras/stv725

Elahi, P. J., Poulton, R., & Canas, R. (2019). VELOCIraptor-STF: Six-dimensional Friends-
of-Friends phase space halo finder. The Astrophysics Source Code Library, ascl:1911.020.
http://ascl.net/1911.020

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., & Wilson, A. G. (2018). GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances
in neural information processing systems (Vol. 31). Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf

GPy. (since 2012). GPy: A Gaussian process framework in Python. http://github.com/
SheffieldML/GPy.

Kugel, & Borrow. (2022). swift-emulator: A Python package for emulation of simulated scaling relations. Journal of Open Source Software,
7(72), 4240. https://doi.org/10.21105/joss.04240.

3

https://doi.org/10.1109/TPAMI.2015.2448083
https://github.com/tisimst/pyDOE
https://github.com/tisimst/pyDOE
https://doi.org/10.21105/joss.02430
https://doi.org/10.1093/mnras/stv725
http://ascl.net/1911.020
https://proceedings.neurips.cc/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.21105/joss.04240


McCarthy, I. G., Schaye, J., Bird, S., & Le Brun, A. M. C. (2017). The BAHAMAS project:
calibrated hydrodynamical simulations for large-scale structure cosmology. Monthly Notices
of the Royal Astronomical Society, 465(3), 2936–2965. https://doi.org/10.1093/mnras/
stw2792

Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hernquist, L., Torrey,
P., Vogelsberger, M., Weinberger, R., & Marinacci, F. (2018). Simulating galaxy formation
with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 473(3),
4077–4106. https://doi.org/10.1093/mnras/stx2656

Schaller, M., Gonnet, P., Draper, P. W., Chalk, A. B. G., Bower, R. G., Willis, J., &
Hausammann, L. (2018). SWIFT: SPH With Inter-dependent Fine-grained Tasking. The
Astrophysics Source Code Library, ascl:1805.020. http://ascl.net/1805.020

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Nelson,
D., & Hernquist, L. (2014). Introducing the Illustris Project: simulating the coevolution
of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical
Society, 444(2), 1518–1547. https://doi.org/10.1093/mnras/stu1536

Kugel, & Borrow. (2022). swift-emulator: A Python package for emulation of simulated scaling relations. Journal of Open Source Software,
7(72), 4240. https://doi.org/10.21105/joss.04240.

4

https://doi.org/10.1093/mnras/stw2792
https://doi.org/10.1093/mnras/stw2792
https://doi.org/10.1093/mnras/stx2656
http://ascl.net/1805.020
https://doi.org/10.1093/mnras/stu1536
https://doi.org/10.21105/joss.04240

	Summary
	Statement of need
	Emulator Requirements
	Why swift-emulator?
	Acknowledgements
	References

