
DMT-core: A Python Toolkit for Semiconductor Device
Engineers
Mario Krattenmacher ∗1,2, Markus Müller †1,2, Pascal Kuthe1,2, and
Michael Schröter1,2

1 CEDIC, TU Dresden, 01062 Dresden, Germany; 2 SemiMod GmbH, 01159 Dresden, Germany
DOI: 10.21105/joss.04298

Software
• Review
• Repository
• Archive

Editor: Lucy Whalley
Reviewers:

• @dilawar
• @phoebe-p

Submitted: 08 March 2022
Published: 04 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of need
Semiconductor device engineers are faced by a number of non-trivial tasks that can be solved
efficiently using software. These tasks include, amongst others, data analysis, visualization
and processing, as well as interfacing various circuit and Technology-Computer-Aided-Design
(TCAD) simulators. In practice, custom ‘home-made’ scripts of varying quality are employed
to solve these tasks. It is often found that fundamental software engineering concepts, such as
Test-Driven-Development (Shull et al., 2010), or the use of state-of-the-art version control
tools (e.g. Git) and practices (e.g. continuous integration, CI), are not utilized by these scripts.

The issues inflicted by this practice include:

• The analysis/visualization/generation of data becomes difficult to reproduce.
• Device engineers work far from their maximum work-efficiency, as they are hindered,

instead of empowered, by the software infrastructure.
• Knowledge built-up, possibly over decades, may be lost when developers leave a company

or institution.

The Device Modeling Toolkit (DMT) presented here aims to solve these issues. DMT provides a
Python library that offers:

• classes and methods relevant to commonly used device engineering tasks
• several abstract base classes for implementing new interfaces to various types of simulators
• concrete implementations of the abstract base classes for open-source simulators such as

Ngspice (Vogt, 2022), Xyce (Keiter et al., 2014) or Hdev (Müller et al., 2022).

DMT-based simulations allow data generation, workflow implementation and visualization to
be implemented in a single file, enabling more efficient cooperation and more reproducible
research (Stodden et al., 2016). Basic principles in software engineering, such as unit testing,
version control, and documentation, are adhered to so that others can use and contribute to
the software.

Summary
DMT is implemented as a toolkit that follows the principles of object-oriented software design.
The DMT Git repository contains the DMT code alongside documentation and a number of CI
routines. These routines execute unit tests, execute integration tests and create ready to install
wheel files. This enables electrical engineers with some basic experience in Python to install,
use and contribute to the software.

∗co-first author
†co-first author

Krattenmacher et al. (2022). DMT-core: A Python Toolkit for Semiconductor Device Engineers. Journal of Open Source Software, 7(75), 4298.
https://doi.org/10.21105/joss.04298.

1

https://orcid.org/0000-0003-1274-3429
https://orcid.org/0000-0003-1058-1649
https://doi.org/10.21105/joss.04298
https://github.com/openjournals/joss-reviews/issues/4298
https://gitlab.com/dmt-development/dmt-core
https://doi.org/10.5281/zenodo.6685185
http://lucydot.github.io
https://orcid.org/0000-0002-2992-9871
https://github.com/dilawar
https://github.com/phoebe-p
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04298

DMT data is stored using DataFrame objects. The DataFrame class is a subclass of
pandas.DataFrame (McKinney, 2010), ideally suited for processing and analyzing large
amounts of data. DMT extends this class with several data-processing methods that are
particularly useful for electrical quantities such as currents, voltages and charges. Some of
these methods are based on routines in scikit-rf (Arsenovic et al., 2022).

Electrical data can be generated using a diverse array of methods, ranging from experimental
measurements to circuit simulations. A central problem with this data is the inconsistent
naming of variables, which should be consistent throughout the code in order to process data
in a unified way. For example, some people might abbreviate the collector current of a bipolar
transistor as I_C, while others might write IC instead. This can lead to confusion when
transferring data between engineers, or even for a single engineer transferring data between
different work stations and/or (proprietary) software packages. To solve this problem DMT

implements a bullet-proof grammar for naming electrical quantities, and translates all data
columns to this grammar during data import.

DMT offers classes and methods which can be either used directly or subclassed, for e.g. creating
interfaces to circuit simulators. The base class offered by DMT for representing electrical devices
is called DutView (Device-Under-Test). This abstract class provides common attributes and
methods that represent measurements, circuit simulations or TCAD simulations. There are
several subclasses that add logic:

• DutMeas adds logic for DUT instances that contain measured data.
• DutCircuit is an abstract class that adds logic for DUT instances that represent circuit

simulations. The interface is implemented in the DMT-core module for:
– Xyce (Keiter et al., 2014) in DutXyce, and
– Ngspice (Vogt, 2022) in DutNgspice.

• DutTCAD ads logic for DUT instances that represents devices based on TCAD simulations.
The interface is implemented for:

– Hdev (Müller et al., 2022) in DutHdev.

Interfaces to other simulators, e.g. proprietary ones, are straight forward to implement. All
simulators can be used as drop-in replacements for each other. There are only two necessary
steps that need to be implemented for each simulator. First, a routine for generating the
simulator input file must be implemented. Second, an import routine that returns a DataFrame

from the simulator output must be provided. This is illustrated in Figure 1.

«interface»
Simulator binary

executable
DMT

Input file1. writes

Simulation
Results

4. writes5. reads

2. starts

3. reads

Figure 1: DMT interfacing a circuit simulator and corresponding data flow.

Often one needs to handle many different devices, e.g. transistors with different geometries.
For this purpose the DutLib class offers a “container” for DutView objects for e.g. storing the
measurement data of one wafer. A typical use case is loading measurement data generated for
a given technology, including specific test structures and transistors.

Circuit and TCAD simulations are started and controlled by the SimCon class. This class

Krattenmacher et al. (2022). DMT-core: A Python Toolkit for Semiconductor Device Engineers. Journal of Open Source Software, 7(75), 4298.
https://doi.org/10.21105/joss.04298.

2

https://doi.org/10.21105/joss.04298

enables the user to run many simulations in parallel and utilizes the high core count of modern
computers. Each simulation requires one DutView object that defines either a circuit or TCAD
simulation, as well as the definition of a sweep for changing the operating point. The definition
of sweeps, e.g. the sweep of voltages or currents, is controlled by objects in the Sweep class.
SimCon also generates a hash for every simulation, so that identical simulations will not re-run
when the software is called multiple times, provided the simulation definition (and therefore
the hash) have not changed.

Model parameters are stored using the MCard class. Mcard implements a container for storing
all model parameters, including information on parameter boundaries that is directly obtained
from Verilog-A source files. This feature leverages the VerilogAE tool (Kuthe et al., 2020).
MCard can interpret Verilog-A model codes, save and load lists of model parameters and can
also be used to define elements in the Circuit class used for defining circuit simulations.

Finally, DMT implements the Plot class for displaying electrical data using different back-ends:

• matplotlib for interactive plots
• pyqtgraph for plots to be used in GUI applications
• LaTeX:pgfplots for TeX based technical documentation or scientific publications

An example plot of a simulated transistor is shown in Figure 2.

10−2 10−1 100 101 102
0

100

200

300

400

IC (mA)

f T
(G

H
z)

VBC = −0.50V
VBC = 0.00V
VBC = 0.50V

Figure 2: Transit frequency fT of a Bipolar transistor.

Related Publications
DMT is used internally by CEDIC staff in research and by SemiMod for commercial purposes. It
has also been used by cooperating institutions and companies. The project has been used in
the following contexts:

• for circuit simulations (Weimer et al., 2022),
• for TCAD simulations and plotting (Markus Muller et al., 2021),
• for circuit and TCAD simulations (M. Muller et al., 2022),
• for model parameter extraction (Müller & Schröter, 2019) and
• for model parameter extraction and TCAD simulation (Phillips et al., 2022).

In addition, DMT has been cited in (Grabinski, 2019; Kuthe et al., 2020; Müller et al., 2019,
2021).

Related Projects
DMT directly uses the VerilogAE (Kuthe et al., 2020) for accessing all information in Verilog-AMS
files. The TCAD simulator Hdev (Müller et al., 2022) uses the class DutHdev as its Python
interface.

Krattenmacher et al. (2022). DMT-core: A Python Toolkit for Semiconductor Device Engineers. Journal of Open Source Software, 7(75), 4298.
https://doi.org/10.21105/joss.04298.

3

https://man.sr.ht/~dspom/openvaf_doc/verilogae/
https://gitlab.com/metroid120/hdev_simulator
https://doi.org/10.21105/joss.04298

Acknowledgements
This project would not have been possible without our colleagues Dipl.-Ing. Christoph Weimer
and Dr.-Ing. Yves Zimmermann. We particularly acknowledge Wladek Grabinski for his efforts
to promote the use of open source software in the semiconductor community.

References
Arsenovic, A., Hillairet, J., Anderson, J., Forsten, H., Ries, V., Eller, M., Sauber, N., Weikle,

R., Barnhart, W., & Forstmayr, F. (2022). Scikit-rf: An Open Source Python Package for
Microwave Network Creation, Analysis, and Calibration [Speaker’s Corner]. IEEE Microw.
Mag., 23(1), 98–105. https://doi.org/10.1109/MMM.2021.3117139

Grabinski, W. (2019). FOSS TCAD/EDA tools for compact modeling. Arbeitskreis Bipolar.
https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/2019/7-MOS-AK-Association_
wgr_BipAK19.pdf

Keiter, E. R., Mei, T., Russo, T. V., Schiek, R. L., Sholander, P. E., Thornquist, H. K., Verley,
J. C., & Baur, D. G. (2014). Xyce Parallel Electronic Simulator Reference Guide , Version
6 . 2 (September). Sandia National Laboratories (SNL). https://doi.org/10.2172/1826862

Kuthe, P., Müller, M., & Schröter, M. (2020). VerilogAE: An open source Verilog-A compiler
for compact model parameter extraction. IEEE J. Electron Devices Soc., 8, 1416–1423.
https://doi.org/10.1109/JEDS.2020.3023165

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proc. 9th Python
Sci. Conf., 56–61. https://doi.org/10.25080/majora-92bf1922-00a

Muller, Markus, Dollfus, P., & Schroter, M. (2021). 1-D drift-diffusion simulation of two-
valley semiconductors and devices. IEEE Trans. Electron Devices, 68(3), 1221–1227.
https://doi.org/10.1109/TED.2021.3051552

Muller, M., Schroter, M., Jungemann, C., & Weimer, C. (2022). Augmented Drift-Diffusion
Transport for the Simulation of Advanced SiGe HBTs. 2019 IEEE BiCMOS Compd.
Semicond. Integr. Circuits Technol. Symp., 1–4. https://doi.org/10.1109/bcicts50416.
2021.9682487

Müller, M., Krattenmacher, M., & Schröter, M. (2019). Open license parameter extraction tool
- Overview and demo for SiGe HBTs. HICUM Workshop. https://www.iee.et.tu-dresden.
de/iee/eb/forsch/Models/workshop_2019/contr_2019/dmt.pdf

Müller, M., Kuthe, P., Krattenmacher, M., & Schröter, M. (2021). Overview of selected open
source tools for compact modeling. MOS-AK. https://www.mos-ak.org/silicon_valley_
2021/presentations/Mueller_MOS-AK_SV_21.pdf

Müller, M., Mothes, S., Claus, M., & Schröter, M. (2022). Hdev: A 1D and 2D Hydrody-
namic/Drift-Diffusion solver for SiGe and III-V HBTs. J. Open Source Softw.

Müller, M., & Schröter, M. (2019). Selected Results of HICUM Paramter Extraction for InP
HBTs. Arbeitskreis Bipolar. https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/
2019/10-CEDIC_mmu_BipAK19.pdf

Phillips, S., Preisler, E., Zheng, J., Chaudhry, S., Racanelli, M., Muller, M., Schroter, M.,
McArthur, W., & Howard, D. (2022). Advances in foundry SiGe HBT BiCMOS processes
through modeling and device scaling for ultra-high speed applications. 2021 IEEE BiCMOS
Compd. Semicond. Integr. Circuits Technol. Symp., 1–5. https://doi.org/10.1109/
bcicts50416.2021.9682485

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., & Erdogmus, H. (2010). What do
we know about test-driven development? IEEE Softw., 27(6), 16–19. https://doi.org/10.

Krattenmacher et al. (2022). DMT-core: A Python Toolkit for Semiconductor Device Engineers. Journal of Open Source Software, 7(75), 4298.
https://doi.org/10.21105/joss.04298.

4

https://doi.org/10.1109/MMM.2021.3117139
https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/2019/7-MOS-AK-Association_wgr_BipAK19.pdf
https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/2019/7-MOS-AK-Association_wgr_BipAK19.pdf
https://doi.org/10.2172/1826862
https://doi.org/10.1109/JEDS.2020.3023165
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1109/TED.2021.3051552
https://doi.org/10.1109/bcicts50416.2021.9682487
https://doi.org/10.1109/bcicts50416.2021.9682487
https://www.iee.et.tu-dresden.de/iee/eb/forsch/Models/workshop_2019/contr_2019/dmt.pdf
https://www.iee.et.tu-dresden.de/iee/eb/forsch/Models/workshop_2019/contr_2019/dmt.pdf
https://www.mos-ak.org/silicon_valley_2021/presentations/Mueller_MOS-AK_SV_21.pdf
https://www.mos-ak.org/silicon_valley_2021/presentations/Mueller_MOS-AK_SV_21.pdf
https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/2019/10-CEDIC_mmu_BipAK19.pdf
https://www.iee.et.tu-dresden.de/iee/eb/forsch/AK-Bipo/2019/10-CEDIC_mmu_BipAK19.pdf
https://doi.org/10.1109/bcicts50416.2021.9682485
https://doi.org/10.1109/bcicts50416.2021.9682485
https://doi.org/10.1109/MS.2010.152
https://doi.org/10.1109/MS.2010.152
https://doi.org/10.21105/joss.04298

1109/MS.2010.152

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M. A.,
Ioannidis, J. P. A., & Taufer, M. (2016). Enhancing reproducibility for computational
methods. Science, 354(6317), 1240–1241. https://doi.org/10.1126/science.aah6168

Vogt, H. (2022). Ngspice, the open source Spice circuit simulator - Intro. http://ngspice.
sourceforge.net/

Weimer, C., Sakalas, P., Muller, M., Fischer, G. G., & Schroter, M. (2022). An Experimental
Load-Pull Based Large-Signal RF Reliability Study of SiGe HBTs. 2021 IEEE BiCMOS
Compd. Semicond. Integr. Circuits Technol. Symp., 1–4. https://doi.org/10.1109/
bcicts50416.2021.9682473

Krattenmacher et al. (2022). DMT-core: A Python Toolkit for Semiconductor Device Engineers. Journal of Open Source Software, 7(75), 4298.
https://doi.org/10.21105/joss.04298.

5

https://doi.org/10.1109/MS.2010.152
https://doi.org/10.1109/MS.2010.152
https://doi.org/10.1109/MS.2010.152
https://doi.org/10.1126/science.aah6168
http://ngspice.sourceforge.net/
http://ngspice.sourceforge.net/
https://doi.org/10.1109/bcicts50416.2021.9682473
https://doi.org/10.1109/bcicts50416.2021.9682473
https://doi.org/10.21105/joss.04298

	Statement of need
	Summary
	Related Publications
	Related Projects
	Acknowledgements
	References

