
VTUFileHandler: A VTU library in the Julia language
that implements an algebra for basic mathematical
operations on VTU data
Maximilian Bittens 1

1 Federal Institute for Geosciences and Natural Resources (BGR)
DOI: 10.21105/joss.04300

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @dmbates
• @mkitti

Submitted: 01 March 2022
Published: 26 May 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Abstract
With increasing computing resources, investigating uncertainties in simulation results is becom-
ing an increasingly important factor. Hereby, a deterministic simulation is computed several
times with different deviations of the input parameters to produce a variety of outputs of the
same model to analyze those effects. The relevant stochastic or parametric output variables,
such as mean (expected value) and variance, are often calculated and visualized only at selected
individual points of the whole domain. This project aims to provide a simple way to perform
stochastic or parametric post-processing of simulations results on entire domains using the
VTK unstructured grid (VTU) file system (Schroeder et al., 2006) and the Julia language
(Bezanson et al., 2012) as an example. The VTU file format is primarily used in conjunction
with Paraview, an open-source, multi-platform data analysis and visualization tool, to display
results of, e.g., structural or fluid mechanics simulations.

Statement of need
To the authors knowledge, there is no library available, neither for the VTU result file-format
nor any other simulation result file-format, which standardizes stochastic/parametric post-
processing. To this date, this kind of meta post-processing seems to be done by purely
proprietary means. With this novel approach, stochastic properties can be displayed on the
whole domain using well established visualization software.

State of the field
There are other approaches to writing and reading VTU, or more generally VTK, files available
in the Julia community. WriteVTK.jl is a package for the creation of VTK XML files from Julia
out of data already available in system memory. ReadVTK.jl is a project primarily dedicated
to read data written by WriteVTK.jl. Neither of those packages explicitly addresses reading,
writing and manipulating generic VTU files. However, an advanced VTK Python Wrapper
does exist.

Introduction
The Visualization Toolkit (VTK) is an open source software project for manipulating and
displaying scientific data. It supports a variety of visualization algorithms and advanced
modeling techniques such as implicit modeling and mesh smoothing. It defines three types of
file formats: a legacy format, an XML format and an HDF file format. Since the HDF file
format is fairly new, the XML file format is the most used so far and will be also used here.

Bittens. (2022). VTUFileHandler: A VTU library in the Julia language that implements an algebra for basic mathematical operations on VTU
data. Journal of Open Source Software, 7(73), 4300. https://doi.org/10.21105/joss.04300.

1

https://orcid.org/0000-0001-9954-294X
https://doi.org/10.21105/joss.04300
https://github.com/openjournals/joss-reviews/issues/4300
https://github.com/baxmittens/VTUFileHandler
https://doi.org/10.5281/zenodo.6576155
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/dmbates
https://github.com/mkitti
https://creativecommons.org/licenses/by/4.0/
https://www.paraview.org/
https://github.com/jipolanco/WriteVTK.jl
https://github.com/trixi-framework/ReadVTK.jl
https://github.com/Kitware/VTK/tree/master/Wrapping/Python
https://vtk.org/
https://doi.org/10.21105/joss.04300


VTK datasets are classified into one of two categories: structured (tensor grids, image data)
and unstructured (meshes). We will restrict ourselves to unstructed datasets in the following
since modern simulation results are often times performed on complex geometries. Simulation
results saved as VTU files can be displayed and investigated with the Paraview application.

Julia is a fast and dynamic programming language which enables fast prototyping as well as
efficiently implemented software solutions. With its in-built features for numerical mathematics
and distributed computing, it is very well suited for implementing computational physics.
However, since Julia is a relatively newer programming language, it has often time lacks the
native connections to other software projects or industry standards that exist in Python, for
example.

The software presented here should make it possible to read in, manipulate and write out
existing VTU files.

Motivation
Consider a discrete computational model M, providing a generic output Y for a given set of
inputs X:

Y = M(X) . (1)

For example, the output Y can be a scalar, a vector, a matrix, or a finite-element post-
processing result. In this case, we consider the output to be a VTU file. The input parameters
are considered a set of scalars X = {X1, ..., XN}, and for simplicity, the set is reduced to a
singleton (N = 1). Equation (1) is called the deterministic case. As a next step, we introduce
a parametric variation X := X(ξ), where ξ maps the inputs from a minimum to a maximum
value. We refer to this problem formulation as the parametric (or if ξi, i ∈ 1, ..., N is a random
variable with a probability density function, stochastic ) case:

Y(ξ) = M(X(ξ)) . (2)

Since M(X(ξ)) is no longer deterministic, further methods are required to discretize the
sample space and to post-process and visualize the results. Different methods for uncertainty
quantification can be found in Gates & Bittens (2015) or Sudret et al. (2017), for example.
The most prominent method for computing the expected value of the problem described in
Equation (2) is the Monte-Carlo method:

E[Y(ξ)] ≈ Ẽ[M(X(ξ))] =
1

M

M∑
i=1

M(X(ξ̃i)) , ξ̃ij ∼ U(0, 1) . (3)

From (3) we can conclude that if Y(ξ̃i) = M(X(ξ̃i)) is a deterministic VTU result file at
position ξ̃i in the sample space, it is sufficient to implement the operators +(::VTUFile,::VT

UFile) and /(::VTUFile,::Number) to compute the expected value on the entire domain by
help of the Monte-Carlo method.

Definition of a VTUFile algebra
First we define an abstract VTUFile which represents the simulation results stored in memory
as a series of coefficients of supporting points and can be thought of as a vector or matrix. As
a next step, let V = (VTUFile,+, ∗) be a field and A ⊆ Rn a vector space over V . Then V
is an algebra if for all x, y, z ∈ A and a, b ∈ V the following holds:

(x+ y) ∗ z = x ∗ z + y ∗ z (4)
z ∗ (x+ y) = z ∗ x+ z ∗ y (5)
(ax) ∗ (bx) = (ab)(x ∗ y) (6)

Bittens. (2022). VTUFileHandler: A VTU library in the Julia language that implements an algebra for basic mathematical operations on VTU
data. Journal of Open Source Software, 7(73), 4300. https://doi.org/10.21105/joss.04300.

2

https://julialang.org/
https://doi.org/10.21105/joss.04300


The above holds in general, if the (∗)-operator acts scalar-wise:

(x ∗ y)i := xi ∗ yi for all x, y ∈ A . (7)

Preliminaries
The VTUFileHandler will eventually be used to perform stochastic post-processing on large
VTU result files. Therefore, the following assumptions have to be fulfilled for the software to
work correctly:

1. The VTU file must be in binary format and, in addition, can be Zlib compressed.
2. Operators can only be applied to VTU files that share the same topology. The user must

ensure that this condition is met.
3. The data type of numerical fields of the VTU file, for which operators should be applied,

has to be Float64.

Features
The VTUFileHandler implements a basic VTU reader and writer through the functions:

function VTUFile(file::String) ... end

function Base.write(vtu::VTUFile, add_timestamp=true) ... end

By default, a timestamp is added if VTU files are written to disk not to overwrite existing files.
Only data fields that are registered by the function

function set_uncompress_keywords(uk::Vector{String}) ... end

before reading the VTU file are uncompressed and can be altered. For applying math operators
onto a data field, the associated field has to be registered by the function

function set_interpolation_keywords(ik::Vector{String}) ... end

The following math operators acting point-wise on nodal results (point data) are implemented:

+(::VTUFile, ::VTUFile),+(::VTUFile, ::Number),

-(::VTUFile, ::VTUFile),-(::VTUFile, ::Number),

*(::VTUFile, ::VTUFile),*(::VTUFile, ::Number),

/(::VTUFile, ::VTUFile),/(::VTUFile, ::Number),

^(::VTUFile, ::Number)

In-place variations of the operators above are implemented as well.

Example
A three-dimensional cube with dimension (x, y, z) with 0 ≤ x, y, z ≤ 2 discretized by quadratic
hexahedral elements with 27 points and 8 cells named vox8.vtu with a linear ramp in x-direction
(f(x = 0, y, z) = 0, f(x = 2, y, z) = 0.8) as a result field termed xramp will be used as an
example (see Figure 1). The following set of instructions transforms the result field from a
linear ramp to a quadratic function in x-direction (displayed as a piece-wise linear field due to
the discretization):

set_uncompress_keywords([”xRamp”]) # uncrompress data field xramp

set_interpolation_keywords([”xRamp”]) # apply math operators to xramp

vtu = VTUFile(”vox8.vtu”); # read the vtu

vtu += vtu/4; # [0.0,...,0.8] -> [0.0,...,1.0]

vtu *= 4.0; # [0,...,1.0] -> [0.0,...,4.0]

vtu -= 2.0; # [0,...,4.0] -> [-2.0,...,2.0]

Bittens. (2022). VTUFileHandler: A VTU library in the Julia language that implements an algebra for basic mathematical operations on VTU
data. Journal of Open Source Software, 7(73), 4300. https://doi.org/10.21105/joss.04300.

3

https://github.com/baxmittens/VTUFileHandler.jl
https://doi.org/10.21105/joss.04300


vtu ^= 2.0; # [-2.0,...,2.0] -> [4.0,...,0.0,...,4.0]

rename!(vtu, ”vox8_1.vtu”)

write(vtu)

Both, the initial (vox8.vtu) and the manipulated file (vox8_1.vtu) can be loaded and displayed
with Paraview. The result is depicted in figure Figure 1.

Figure 1: Cube with initial result field (left). Cube with manipulated result field (right). Rendered
with Paraview.

Conclusion
A basic VTU library was implemented, which does not claim completeness in terms of
VTU features. However, the implemented math operators constitute a complete feature set
sufficient to compute a complete parametric or stochastic post-processing of VTU files. This
implementation can readily be used for this purpose or can be utilized as a template for
extending a different VTU library. The quantification of uncertainties in coupled thermo-hydro-
mechanical simulations can serve as an example of an application where this tool together with
ogs6py and OpenGeoSys (Buchwald et al., 2021) can be used to fully automate stochastic
computations.

References
Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic

language for technical computing. arXiv Preprint arXiv:1209.5145.

Buchwald, J., Kolditz, O., & Nagel, T. (2021). ogs6py and VTUinterface: Streamlining
OpenGeoSys workflows in python. Journal of Open Source Software, 6(67), 3673. https:
//doi.org/10.21105/joss.03673

Gates, R. L., & Bittens, M. R. (2015). A multilevel adaptive sparse grid stochastic collocation
approach to the non-smooth forward propagation of uncertainty in discretized problems.
arXiv Preprint arXiv:1509.01462.

Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit, 4th edn. kitware.
New York. ISBN: 978-1-930934-19-1

Sudret, B., Marelli, S., & Wiart, J. (2017). Surrogate models for uncertainty quantification:
An overview. 2017 11th European Conference on Antennas and Propagation (EUCAP),
793–797. https://doi.org/10.23919/EuCAP.2017.7928679

Bittens. (2022). VTUFileHandler: A VTU library in the Julia language that implements an algebra for basic mathematical operations on VTU
data. Journal of Open Source Software, 7(73), 4300. https://doi.org/10.21105/joss.04300.

4

https://www.paraview.org/
https://www.paraview.org/
https://github.com/joergbuchwald/ogs6py
https://www.opengeosys.org/
https://doi.org/10.21105/joss.03673
https://doi.org/10.21105/joss.03673
https://doi.org/10.23919/EuCAP.2017.7928679
https://doi.org/10.21105/joss.04300

	Abstract
	Statement of need
	State of the field
	Introduction
	Motivation
	Definition of a VTUFile algebra
	Preliminaries
	Features
	Example
	Conclusion
	References

