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Summary
The MeMC is an open-source software package for Monte Carlo simulation of elastic shells. It
is designed as a tool to interpret the force-distance data generated by indentation of biological
nano-vesicles by atomic force microscopes. The code is written in c++ and python. The code
is customizable – new modules can be added in a straightforward manner.

Statement of need and purpose of software
Micro and nano vesicles, both natural and synthetic, play a crucial role in biology and
medicine. The physical properties of these vesicles play an important role in their biological
functions (Phillips et al., 2012). Hence it is important to be able to measure their elastic
constants, in particular the Young’s modulus and the bending rigidity. One way to measure
the elastic constants of biological objects, e.g., a red blood cell (RBC), is to poke them with
an atomic force microscope (AFM) to obtain a force-distance curve. Then we must model
the biological object as an elastic material and by fitting this model to the experimental
force-distance curve estimate the parameters of the elastic model, i.e., the elastic constants.
As an example, consider a force-distance curve obtained by AFM measurement of a RBC. The
RBC is modeled as a linear elastic material with a Young’s modulus, Y3d. Typically a Hertzian
model of elastic bodies in contact (Landau & Lifshitz, 1970, sec. 9) is used to measure Y3d.
Nano vesicles differ from (micro-meter scale) cells in two important ways

1. The nano-vesicles are much smaller hence thermal fluctuations may effectively renormalize
the elastic coefficients (Košmrlj & Nelson, 2017 ; Paulose et al., 2012).

2. Cell membranes are strongly coupled to an underlying cytoskeleton. Hence they may be
modeled by a solid body (Lim HW et al., 2002) but nano-vesicles must be modeled as
liquid filled elastic membranes.

Hence, to be able to interpret the force-distance curve of nano-vesicles, we need to solve for
the elastic response of a thermally fluctuating elastic shell.

There are commercial packages, e.g., COMSOL (Inc., 2020), to calculate the force-distance
curve of solid bodies and closed membranes with fluids inside under the action of external
forces but to the best of our knowledge there is no package that includes thermal effects.
Monte Carlo simulations of elastic membranes, that includes thermal fluctuations, have been
done for more than three decades (Auth & Gompper, 2005; Bowick et al., 2001; Goetz et al.,
1999; Paulose et al., 2012), see also (Gompper & Kroll, 2004) for a review. But to the best

Agrawal et al. (2022). MeMC: A package for Monte Carlo simulations of spherical shells. Journal of Open Source Software, 7(74), 4305.
https://doi.org/10.21105/joss.04305.

1

https://orcid.org/0000-0002-1291-5035
https://orcid.org/0000-0002-5120-2142
https://orcid.org/0000-0001-8578-2272
https://orcid.org/0000-0002-6235-2891
https://orcid.org/0000-0003-4861-8152
https://doi.org/10.21105/joss.04305
https://github.com/openjournals/joss-reviews/issues/4305
https://github.com/vipinagrawal25/MeMC
https://doi.org/10.5281/zenodo.6671531
https://fboehm.us
https://orcid.org/0000-0002-1644-5931
https://github.com/victorapm
https://github.com/mgiardino
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04305


of our knowledge there is no open-source code available. The goal of this package is to fill
this gap in open-source software. Our software is targeted towards physicists and biologists
working in soft matter.

Theoretical background
Our model of nano-vesicles is an amorphous membrane enclosing an incompressible fluid(Vorse-
len et al., 2017). Unlike a solid ball, the force-distance relationship for such a model is linear for
small deformation (Paulose et al., 2012; Vorselen et al., 2017), if we ignore thermal fluctuations.
Ref. (Vorselen et al., 2017) uses a similar model, ignoring thermal fluctuations, to interpret
AFM measurement of nano-vesicles.

Let us consider a (three dimensional) material with Young’s modulus Y3d and Poisson’s ratio
σ3d and make a membrane out of it. Then the bending modulus and the in-plane Young’s
modulus is given by (Landau & Lifshitz, 1970, sec. 13 and 14)

B =
Y3dh

3

12(1− σ2
3d)

and Y = Y3dh, (1)

where h is the thickness of the membrane. This need not necessarily hold for biological
membranes. Nevertheless consider a fluid enclosed in a solid membrane, as done in (Paulose
et al., 2012). We consider an elastic energy

E [w, u] =
∫

d2x

[
B

2

(
∇2w

)2
+ µu2

ij +
λ

2
u2
kk − pw

]
(2)

uij =
1

2
(∂iuj + ∂jui + ∂iw∂jw)− δij

w

R
, (3)

where R is the radius of the spherical cell, w is the out-of-plane deformation, and u is the
in-plane deformation, p is the pressure, λ and µ are the two in-plane Láme coefficients and
B is the bending modulus. The Láme coefficients are related to other elastic constant as
follows (Landau & Lifshitz, 1970)

K = λ+
2

3
µ, Y =

9Kµ

3K + µ
, σ =

1

2

3K − 2µ

3K + µ
(4)

Here K is the volume compressibility, Y the Young’s modulus, and σ the Poisson ratio.

If we consider the material to be incompressible, K → ∞ and σ = 1/2, then

Y =
µ

3
.

Now there are two elastic constant, the bending rigidity B and the Young’s modulus Y .
Consequently, there are two dimensionless numbers, the Föppl–von-Karman number

FvK =
Y R2

B
(5)

and the Elasto-Thermal number:

ET =
kBT

B

√
FvK, (6)

where kB is the Boltzmann constant, and T is the temperature.

Using values of Y and B from molecular dynamics simulations of lipid bilayers (Boek et al.,
2005), Y = 1.7N/m and B = 5kBT and R = 100 nano meter, we have FvK ≈ 0.3 × 107

which is close to the Föppl–von-Karman number for Graphene sheets and ET ≈ 103.
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Numerical implementation

Grid
Following Ref. (Gompper & Kroll, 2004), we use a triangulated-network grid in the following
manner. We start with N randomly chosen points on a sphere . Then, we run a Monte
Carlo simulation, with a Lennard-Jones (LJ) repelling potential, of these points moving on
the surface. Once the surface Monte Carlo (SMC) has reached an equilibrium, we use the
algorithm in Ref. (Caroli et al., 2009) to construct the Delaunay triangulation of these points.
The connection between the points thus formed is kept unchanged. In the rest of this paper,
we call this the initial configuration(Figure 1(A)). A different snapshot (Figure 1(B)) from the
same equilibrium gives an equivalent but differently triangulated grid.

An alternative is to use a regular grid (Buenemann & Lenz, 2008; Vliegenthart & Gompper,
2006). This is achieved by approximating the sphere with a geodesic polyhedron (Figure 1(C)).
They are available from the Meshzoo library (Schlömer, 2020). In this paper we use N = 5120
for the random grid and N = 5292 for the regular grid.

A B C

Figure 1: Grid points on a sphere (A)Triangulated random points on a sphere. (B) Triangulated
points on sphere after 60000 SMC iteration of the initial configuration shown in (A). (C) An example
of regular grid.

Energy
The basic algorithm of Monte Carlo simulations is straightforward and well-known (see, e.g.,
Baumgärtner et al., 2013). We randomly choose a point on the grid and move it by a random
amount. We calculate the change in energy due to this movement. We accept or reject
the move by the standard Metropolis algorithm. In our code the energy has the following
contributions

E = Es + Ebend + Ebulk (7)

where Es is the contribution from stretching, Ebend is the contribution from bending, and
Ebulk is the contribution from the bulk modulus. We describe each of these in turn.

Stretching

In the initial configuration, two neighboring points with coordinates Ri and Rj are connected
by a bond of length `0

ij. When the i-th point is moved all its bonds with the neighbors change
from their initial length. We model each of these bonds by a harmonic spring and calculate
the stretching energy by
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Es =
1

2

∑
i

H

2

∑
j(i)

(
Rij − `0

ij
)2 where (8)

Rij ≡ |Ri −Rj|,

and H is the stretching coefficient. Here the notation j(i) denotes that the sum is over all the
nearest neighbors of the i-the point.

The Láme coefficients and the Young’s modulus are given by (Seung & Nelson, 1988)

λ = µ =

√
3

4
H, Y =

2√
3
H (9)

Bending

Figure 2: An example of triangulated mesh at the node i. αij, βij are the angles opposite to the
bond ij. Shaded part is the Voronoi region of triangle T defined by nodes (i, j − 1, j). Here, we
consider that the triangle T is acute.

To calculate the bending contribution, we need to calculate the curvature. In the continuum
limit, N → ∞, bending energy (Nelson et al., 2004) is:

EB =
B

2

∫
(∇2R)2dS, (10)

where ∇2R is Laplacian of R on the surface of the sphere.

A general introduction to discretization of Laplacian on a triangulated mesh is given in
Refs.(Hege & Polthier, 2003; Itzykson, 1986). Laplacian on a 2D manifold embedded in R3 is:

L(R) = 2κ(R)m̂(R), (11)

where κ(R) is the mean curvature, and m̂(R) is the normal to the surface at R. Note that,
m̂(R) is a local property of a point P with coordinates R and it is not necessarily the outward
normal of the closed surface. In the discrete form (Hege & Polthier, 2003; Meyer et al., 2003),

Li =
1

Ai

∑
j(i)

1

2
[cot(αij) + cot(βij)]Rij (12)

Ai is the area of Voronoi dual cell at the node i, and αij, βij are the angles opposite to bond
ij as shown in Figure 2. Consider the triangle T in Figure 2 defined by its vertices (i, j − 1, j).
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If T is non-obtuse its circumcenter lies within it, hence so does the Voronoi region. Let Ac be
the area of shaded region in Figure 2 given by (Hege & Polthier, 2003; Meyer et al., 2003),

Ac =
1

8

[
R2

ij cot(αij) +R2
ij−1 cot(βij−1)

]
. (13)

If there is an obtuse angle in triangle T, the Voronoi region is not necessarily enclosed by the
triangle (Hege & Polthier, 2003). For such cases, instead of Ac, we use Ab, defined as (Hege
& Polthier, 2003; Meyer et al., 2003):

Ab =

{
area(T)

2 , angle of T at i is obtuse
area(T)

4 , any other angle is obtuse

}
, (14)

where area(T ) = 0.5 |Rij × Rij−1| is the area of the triangle T. The area Ai is obtained by
summing up the contributions in Figure 2 from all the triangles in , e.g., the contribution from
the triangle T is the shaded area. For a closed surface the bending energy must be calculated
relative to the spontaneous curvature, i.e., its discretised form is

Ebend =
B

2
Ai (Li − Cn̂)

2
. (15)

where C is the spontaneous curvature, for a sphere C = 2/R, where R is radius of the sphere
and n̂ is the outward normal to the surface. Hence not only the magnitude but also the
vector nature of the surface Laplacian must be determined. For every triangle in the initial
configuration, i.e., when all the points lie on the surface of a sphere, the outward unit normal
can be calculated in a straightforward manner. For example, for the triangle T in Figure 2,
it can be calculated by finding out the unit vector that points along Rij−1 × Rij. Hence, at
any time, if we access the points around the node i in counterclockwise manner when viewed
from outside we are guaranteed to obtain the outward normal. We ensure this by sorting
appropriately the points around every node in the initial configuration. As the connectivity
of the mesh remains unchanged this property is preserved at all future times. To sort the
neighbors around any node i, we rotate the coordinate system such that, the z axis passes
through the point i along the vector Ri. In this coordinate system we sort the neighbors by
their azimuthal angle. Note that unlike Ref. (Gompper & Kroll, 2004) we do not incorporate
self-avoidance.

Bulk

We assume that the liquid inside the vesicle is incompressible 1. This is implemented by adding
a energy cost to the volume change. At any point, the total contribution to the bulk energy is

Ebulk = K

(
V

V0
− 1

)2

, (16)

where K is bulk modulus, V is current volume, and V0 = (4/3)πR3 is the initial volume of
the vesicle. As we move the point i by a random amount, the change in bulk energy is

∆Ebulk = 2K
∆V (V − V0)

V 2
0

+

(
∆V

V0

)2

, (17)

where ∆V is the change in volume due to the move. Since we update the position of only one
node at a time, ∆V is equal to the change in volume of the tetrahedrons VT, enclosed by all
the neighboring triangles around node i and center of the shell. Hence

VT ≡ 1

3
(∇ · r)VT =

1

3
(r · n̂)ST, (18)

where r is the position of the centroid and ST is the surface area of the respective triangle.
The first equality uses (∇ · r) = 3 for a sphere, and the second equality is the result of Gauss
divergence theorem.

1This is different from assuming a semi-permeable membrane, as done in Ref. (Vorselen et al., 2017), in
which case the liquid can flow in or out and the osmotic pressure of solutes decreases and increases accordingly.
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Sticking to a solid surface
As a specific example of a nano-vesicle, we consider an exosome. We quote from Ref. (Pegtel &
Gould, 2019) “Exosomes are small, single-membrane, secreted organelles of ∼ 30 to ∼ 200 nm
in diameter that have the same topology as the cell and are enriched in selected proteins, lipids,
nucleic acids, and glycoconjugates.” The exosomes that we consider here were collected from
immortalized cell line and extracted following the procedures as described in Ref. (Cavallaro
et al., 2019). To measure the force-distance curve it is necessary to fix an exosome on a
transparent coverslip. This was done by electrostatic coupling to a PLL coated surface by
incubating them at room temperature for one hour, see Ref (Cavallaro et al., 2019). As an
illustration, in Figure 3, we show a typical experimental measurement of the height above a
flat surface as measured by the AFM. After being stuck to the flat surface the free surface
forms a spherical cap. To reproduce such experiments as closely as possibly we need to fix the
vesicle to a flat surface. This is implemented by the Lennard-Jones potential:

VLJ(r) ≡ 4εw

[(σw

r

)12

−
(σw

r

)6
]

(19)

What fraction of the vesicle is fixed to the flat surface is parametrized by the angle Θ0 (see
Figure 3(B)) which is a parameter in our code. We choose a system of coordinates with its
origin at the center of the vesicle and the z axis pointing radially outward through the north
pole. All the grid points on the surface whose polar angle is greater than Θ0 are selected such
that the sticking potential acts only on them, see Figure 3(B).

0.0 0.5 1.0 1.5 2.0
0.00

0.25

(A) (B)

(C)

Figure 3: (A) A colormap of the height as measured by the AFM. (B) Illustration of the vesicle stuck
to a surface by an angle Θ0. (C) The height plotted along the line shown in (A).

AFM tip
To model the interaction between AFM tip and the vesicle, We model the shape of tip as
paraboloid and we use only the repelling part of the Lennard-Jones potential:

VRLJ(r) ≡ 4εA

(σA

r

)12

(20)

For every point on the vesicle, we calculate the shortest distance of this point to the paraboloid
and use this distance as the argument of function VRLJ in Equation 20.
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Dependencies
The code requires the following:

• A c++ compiler. We have tested the code against gnu g++ version 11.2.0 on x86_64
CPU.

• Hdf5 libraries for reading and writing data.

• Python version 3.8 with scipy,numpy, h5py and numpy-quaternion installed.

• For three-dimensional visualization we use VisIt (Childs et al., 2012).

Typical workflow and test
We have tested our code in a LINUX operating system. We expect it to work without any
problem in any similar environment. It may also work with WINDOWS although we have not
tested this aspect.

The github repository (Vipin et al., 2022) contains a file named README.md that contains
instruction to install and run the code. In Figure 4 we show three typical snapshots from our
code for three different position of the AFM tip.

In the github repository, we also provide a subdirectory called Examples. By executing the
shell script execute.sh in that directory the user can run the code (without the AFM tip and
the bottom plate). It takes almost 30 minutes on Intel(R) Core(TM) i5-8265U CPU. The run
produces a probability distribution function (PDF) of the total energy after 50, 000 monte
carlo steps. By running gnuplot plot.gnu (this requires the software gnuplot) the user can
compare the PDF obtained by their run with a PDF that we provide.

(A) (C)(B)

Figure 4: Representative snapshots from our code for three different positions (tz) of the AFM tip.
The origin of our coordinate system is at the center of the undeformed sphere and the radius of the
undeformed sphere is unity. The colormap shows the signed curvature (Equation 11; red(positive) and
blue (negative). (A) tz = 1.05, (B) tz = 0.9, (C) tz = 0.75

We acknowledge the support of the Swedish Research Council Grant No. 638-2013-9243 and
2016-05225. The simulations were performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at PDC center for high performance computing.
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How to contribute
The code is licensed under GPL-3.0 and hosted here. For any contribution, the developer can
send a pull request. For any queries, the user should open an issue on github.
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