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Summary
Pose2Sim provides a workflow for 3D markerless kinematics, as an alternative to the more
usual marker-based motion capture methods. Pose2Sim stands for “OpenPose to OpenSim”,
as it uses OpenPose inputs (2D coordinates obtained from multiple videos) and leads to an
OpenSim result (full-body 3D joint angles).

The repository presents a framework for:

• Detecting 2D joint coordinates from videos, e.g. via OpenPose (Cao et al., 2019)
• Calibrating cameras
• Detecting the person of interest
• Triangulating 2D joint coordinates and storing them as 3D positions in a .trc file
• Filtering these calculated 3D positions
• Scaling and running inverse kinematics via OpenSim (Delp et al., 2007; Seth, 2018), in

order to obtain full-body 3D joint angles

Each task is easily customizable, and requires only moderate Python skills. Pose2Sim is
accessible at https://github.com/perfanalytics/pose2sim.

Statement of need
For the last few decades, marker-based kinematics has been considered the best choice for the
analysis of human movement, when regarding the trade-off between ease of use and accuracy.
However, a marker-based system is hard to set up outdoors or in context, and it requires
placing markers on the body, which can hinder natural movement (Colyer et al., 2018).

The emergence of markerless kinematics opens up new possibilities. Indeed, the interest in
deep-learning pose estimation neural networks has been growing fast since 2015 (Zheng et al.,
2022), which makes it now possible to collect accurate and reliable kinematic data without the
use of physical markers. OpenPose, for example, is a widespread open-source software which
provides 2D joint coordinate estimates from videos. These coordinates can then be triangulated
in order to produce 3D positions. Aside from Pose2Sim, a number a tools are available for such
triangulation: the experimental OpenPose 3D reconstruction module (Hidalgo, 2021), the
FreeMoCap Python and Blender toolbox (Matthis & Cherian, 2022), and the pose3d Matlab
toolbox (Sheshadri et al., 2020). Yet, when it comes to the biomechanical analysis of human
motion, it is often more useful to obtain joint angles than joint center positions in space. Joint
angles allow for better comparison among trials and individuals, and they represent the first
step for other analyses such as inverse dynamics.

OpenSim is another widespread open-source software which helps compute 3D joint angles,
usually from marker coordinates. It lets scientists define a detailed musculoskeletal model,
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scale it to individual subjects, and perform inverse kinematics with customizable biomechanical
constraints. It provides other features such as net calculation of joint moments or resolution
of individual muscle forces, although this is beyond the scope of our contribution.

So far, little work has been done towards obtaining 3D angles from multiple views (Zheng et al.,
2022). However, three software applications are worth mentioning. Anipose (Karashchuk et al.,
2021) proposes a Python open-source framework which allows for joint angle estimation with
spatio-temporal constraints, but it is primarily designed for animal motion analysis. Theia3D

(Kanko et al., 2021) is a software application for human gait markerless kinematics. Although
the GUI is more user friendly, it is neither open-source nor customizable. OpenCap (Uhlrich et
al., 2022) has recently been released, and offers a user-friendly web application working with
low-cost hardware. It predicts the coordinates of 43 anatomical markers from 20 triangulated
keypoints, and imports them in OpenSim. However, the source code has not yet been released.

The goal of Pose2Sim is to build a bridge between the communities of computer vision and
biomechanics, by providing a simple and open-source pipeline connecting the two aforementioned
state-of-the-art tools: OpenPose and OpenSim. The whole workflow runs from any video cameras,
on any computer, equipped with any operating system (although OpenSim has to be compiled
from source on Linux.) Pose2Sim has already been used and tested in a number of situations
(walking, running, cycling, dancing, balancing, swimming, boxing), and published in peer-
reviewed scientific publications assessing its robustness (Pagnon et al., 2021) and accuracy
(Pagnon et al., 2022). Its results for inverse kinematics were deemed good when compared to
marker-based ones, with errors generally below 4.0° across several activities, on both lower
and on upper limbs. The combination of its ease of use, customizable parameters, and high
robustness and accuracy makes it promising, especially for “in-the-wild” sports movement
analysis.

Pose2Sim workflow
Pose2Sim connects two of the most widely recognized (and open-source) softwares in their
respective fields:

• OpenPose (Cao et al., 2019), a 2D human pose estimation neural network
• OpenSim (Delp et al., 2007), a 3D biomechanics analysis software

The workflow is organized as follows (Figure 1):

1. Preliminary OpenPose (Cao et al., 2019) 2D keypoints detection
2. Pose2Sim core, including 4 customizable steps:

1. Camera calibration
2. 2D tracking of the person of interest
3. 3D keypoint triangulation
4. 3D coordinate filtering

3. A full-body OpenSim (Delp et al., 2007) skeletal model with OpenPose keypoints is
provided, as well as scaling and inverse kinematics setup files.

Pagnon et al. (2022). Pose2Sim: An open-source Python package for multiview markerless kinematics. Journal of Open Source Software, 7(77),
4362. https://doi.org/10.21105/joss.04362.

2

https://doi.org/10.21105/joss.04362


Figure 1: Pose2Sim full pipeline: (1) OpenPose 2D keypoint detection; (2.1) Camera calibration;
(2.1–2.4) Tracking of the person of interest, Triangulation of keypoint coordinates, and Filtering; (3)
Constraining the 3D coordinates to an individually scaled, physically consistent OpenSim skeletal model.

Pose2Sim method details
Pose2Sim is meant to be as fully and easily configurable as possible, by editing the ‘User/Con-
fig.toml’ file. Optional tools are also provided for extending its usage (Figure 2).

Project
The user can specify the project path and folder names, the video frame rate, and the range of
analyzed frames.

Figure 2: The Pose2Sim workflow, along with some optional utilities provided in the package.
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2D keypoint detection
It is possible to define which 2D pose estimation model is used. This choice will affect how
keypoint indices will be mapped to model markers in OpenSim, corresponding to anatomical
landmarks or joint centers. Only 21 of the 25 keypoints detected by the default OpenPose

models are tracked, since eye and ear keypoints would be redundant in the determination of
the head orientation.

The OpenPose BODY_25B experimental model is recommended, as it is as fast as the standard
BODY_25 model, while being more accurate (Hidalgo, 2019). Non-OpenPose models can
also be chosen, whether they are human (such as the AlphaPose one (Fang et al., 2017)),
or animal (such as any DeepLabCut model trained by the user (Mathis et al., 2018)). Two
optional standalone scripts are also provided if the user desires a visual display of the resulting
2D pose estimation (Figure 2).

Camera calibration
The user can indicate whether cameras are going to be calibrated with a checkerboard, or
if a preexisting calibration file (such as one provided by a Qualisys system) will simply be
converted.

If checkerboard calibration is chosen, the number of corners and the size of the squares have
to be specified. In this case, the operator needs to take at least 10 pictures or one video per
camera of the checkerboard, covering as much as the field of view as possible, with different
orientations. Corners are then detected and refined with OpenCV. Detected corners can
optionally be displayed for verification. Each camera is finally calibrated using OpenCV with
an algorithm based on (Zhang, 2000). The user can choose the index of the image which they
want to be used as a reference for calculating extrinsic parameters. Residual calibration errors
are given, and stored in a log file.

Tracking the person of interest
One needs to differentiate the people in the background from the actual subject. The tracking
step examines all possible triangulations of a chosen keypoint among all detected persons, and
reprojects them on the image planes. The triangulation with the smallest reprojection error is
considered to be the one associated with the right person on all cameras. If the reprojection
error is above a predefined threshold, the process is repeated after taking off one, or several
cameras. This happens, for example, if the person of interest has exited the field of a camera,
while another person is still in the background.

We recommend choosing the neck point or one of the hip points. In most cases they are the
least likely to move out of the cameras’ views.

Triangulation
Pose2Sim triangulation is robust, largely because instead of using classic Direct Linear Transform
(DLT) (Hartley & Sturm, 1997), we propose a weighted DLT, i.e., a triangulation procedure
where each OpenPose keypoint coordinate is weighted with its confidence score (Pagnon et al.,
2021).

Other parameters can be specified, such as:

• The minimum likelihood (given by OpenPose for each detected keypoint) below which a
2D point will not be taken into account for triangulation.

• The maximum in reprojection error above which triangulation results will not be
accepted. This can happen if OpenPose provides a bad 2D keypoint estimate, or if the
person of interest leaves the camera field. Triangulation will then be tried again on all
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subsets of all cameras minus one. If the best of the resulting reprojection errors is below
the threshold, it is retained. If it is still above the threshold, one more camera is excluded.

• The minimum number of “good” cameras (i.e., cameras remaining after the last two
steps) required for triangulating a keypoint. If there are not enough cameras left, the
3D keypoint is dropped for this frame.

Once all frames are triangulated, the ones with missing keypoint coordinates are interpolated.
The interpolation method can also be chosen from among linear, slinear, quadratic, and cubic.
The mean reprojection error over all frames is given for each point and saved to a log file, as
well as the number of cameras excluded to reach the demanded thresholds. The resulting 3D
coordinates are formatted as a .trc file, which can be read by OpenSim.

Filtering and other operations
Different filters can be chosen, and their parameters can be adjusted. The user can choose
a zero-phase low-pass Butterworth filter (Butterworth, 1930) that they can apply either on
keypoint positions or on their speeds, a LOESS filter (Cleveland, 1981), a Gaussian filter, or a
median filter. Waveforms before and after filtering can be displayed and compared.

If needed, other standalone tools are provided to further work on the .trc 3D coordinate
files (Figure 2). Among others, it is possible to undersample a file from a higher to a lower
framerate, or to convert a file from Z-up to Y-up axis convention. The resulting 3D coordinates
can be plotted for verification. Additionally, a tool is provided to detect gait events from point
coordinates, according to the equations given by (Zeni Jr et al., 2008).

OpenSim scaling and inverse kinematics
The main contribution of this software is to build a bridge between OpenPose and OpenSim.
The latter allows for much more accurate and robust results (Pagnon et al., 2022), since it
constrains kinematics to an individually scaled and physically accurate skeletal model. Bones
are constrained to a constant length, and joints to coherent angle limits.

The provided model is adapted from the human gait full-body model (Rajagopal et al., 2016)
and the lifting full-body model (Beaucage-Gauvreau et al., 2019). The first one has a better
definition of the knee joint: abduction/adduction and internal/external rotation angles are
constrained to the flexion/extension angle. The latter has a better definition of the spine:
each lumbar vertebra is constrained to the next one, which makes it possible for the spine
to bend in a coherent way with only a few tracked keypoints, without having to make it a
rigid single bone. Combining those two models allows for ours to be as versatile as possible.
Hand movements are locked, because the standard OpenPose models don’t provide any hand
detection.

This model also takes into account systematic labelling errors in OpenPose (Needham et
al., 2021), and offsets model markers as regards true joint centers accordingly. Unlike in
marker-based capture, and despite the aforementioned systematic errors, keypoints detection
hardly depends on the subject, the operator, nor the context. For this reason, the scaling and
the inverse kinematic steps are straightforward, and the provided setup files require little to no
adjusting.
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