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Summary
We present Spiner, a new, performance-portable library for working with tabulated data.
Spiner provides efficient routines for multi-dimensional interpolation and indexing on both
CPUs and GPUs—as well as more exotic hardware—including interwoven interpolation and
indexing access patterns, as needed for radiation transport. Importantly, Spiner defines a
data format, based on HDF5, that couples the tabulated data to the information required to
interpolate it, which Spiner can read and move to GPU.

Statement of Need
As Moore’s law comes to an end, more and more performance comes from specialized hardware,
such as GPUs. A key tool in the toolbox for many scientific codes is tabulated data. Fluid
and continuum dynamics codes often encapsulate the equation of state as data tabulated in
density and temperature, for example as published in the Sesame database (Lyon & Johnson,
1992) or the stellar collapse database (O’Connor & Ott, 2010b), first presented in O’Connor
& Ott (2010a). Radiation transport, such as that performed by Skinner et al. (2019) and
Miller et al. (2019) uses emissivity and absorption opacity on tables such as those computed
in Sullivan et al. (2016). As continuum dynamics is required for a variety of applications, such
as astrophysics, geophysics, climate science, vehicle engineering, and national security, utilizing
a very large number of supercomputer cycles, providing tabulated data for these applications
has the potential for significant impact.

These capabilities must be supported on all hardware a code may be run on, whether this is
an NVIDIA GPU, an Intel CPU, or a next generation accelerator manufactured by one of any
number of hardware vendors. To our knowledge there is no performance portable interpolation
library on which these codes can rely, and there is a clear need, which we have developed
Spiner to meet. Spiner is now used in the open-source and on-going Singularity-EOS (The
Singularity Team, 2022a), Singularity-Opac (The Singularity Team, 2022b), and Phoebus
(The Phoebus Team, 2022) projects, which have separate code papers in preparation.
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State of the Field
Interpolation is a common problem, implemented countless times across software projects, and
a core part of any introductory text on scientific computing (Press et al., 2007). In graphics
applications, interpolation is so ubiquitous that hardware primitives are provided by GPUs.
These hardware intrinsics are, however, severely limited for scientific application. For example,
on NVIDIA GPUs, the values to be interpolated must be single precision floating point, and the
interpolation coefficients themselves are only half-precision, which is often insufficient to capture
the high precision required for scientific applications. As GPUs are inherently vector devices,
hardware interpolation is also vectorized in nature. However, downstream applications may be
easier to reason about if scalar operations are available. For example, equation of state lookups
often require root finds on interpolated data, and this can be easier to implement as a scalar
operation, even if the final operation is vectorized over warps. Texture interpolation also does
not support multi-dimensional mixed indexing/interpolation operations where, say, three indices
of a four-dimensional array are interpolated and one is merely indexed into. Interpolation in the
inner loop of a root-finding operation can be quite computationally expensive. For example, in
the open-source general relativistic neutrino radiation hydrodynamics code nubhlight (Miller et
al., 2019), these operations cover approximately ten percent of the runtime. For simulations
involving only fluid dynamics and no expensive six-dimensional Boltzmann solve as required for
radiation, the fraction of a timestep can be significantly larger.

Moreover, relying on hardware intrinsics is not a portable solution. A software interpolation
library can, if written with care, work on not only the current generation of accelerators, but
also on general purpose CPUs and the next generation of hardware as well.

Unfortunately, a performance-portable implementation not tuned to a specific use-case or
embedded in a larger project is (to our knowledge) not available in the literature. A common
problem in performance-portable computing is the management of performance-portable data
structures. Libraries, such as Kokkos (Trott et al., 2022), often provide this functionality.

Here we present Spiner, a performance-portable library for working with tabulated data, thus
meeting the needs of simulation codes on emerging hardware. Spiner provides data structures
for working with tabulated data on both CPU and GPU, routines for interpolating on and
indexing into tabulated data, and a file format that couples data to the information required
to interpolate it. Spiner therefore fills a gap in available open software, providing a needed
service for performance-portable simulation codes.

Interpolation is far more ubiquitous than its application in continuum dynamics and radiation
transport, and we expect Spiner will find applications in the broader space of applications,
such as image resampling. However, the team built Spiner with simulations in mind.

Design Principles and Salient Features
We built Spiner with several design goals in mind. First and foremost, interpolation must
be fast, sufficiently fast that interpolation operations are not the rate-limiting operation in
a larger calculation. Second, Spiner must be lightweight. It should contain exactly enough
features to be useful for relevant science applications. Similarly, Spiner must be sufficiently
low-level and flexible that it can support all performance portability strategies and access
patterns required of it. That said, not all needs will be known at conception, and needs change
over time. Thus Spiner must be extendable. Finally, Spiner should be well-documented with
a modern, easy-to-use build system. We believe we have achieved these goals.

To ensure Spiner is lightweight and performant, it is header-only. To ensure performance
portability, we rely on the Kokkos (Trott et al., 2022) library to provide performance portable
data structures and parallel dispatch. However, we recognize that another performance
portability paradigm may be desired. Hence, we developed a separate library, Ports-of-Call,
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which we open-sourced at lanl/ports-of-call on GitHub (The Ports-of-Call Team, 2022). Ports-

of-Call is a very thin abstraction around low-level device calls. It provides preprocessor macros
to enable or disable Kokkos, an arbirtrary-dimensional array data structure, and hooks to add
the same functionality for other backends such as pure CPU, OpenMP (Chandra et al., 2001),
or Cuda (NVIDIA et al., 2020). Ports-of-Call is only a few hundred lines long. Both Spiner
and Ports-of-Call are well documented, with Sphinx documentation provided automatically by
github pages and github actions. They both also have modern build systems, with Cmake and
Spack support. Unit tests are provided by Catch2 (The Catch2 Collaboration, 2013).

The fundamental data structures are the DataBox and RegularGrid1D. The former relies heavily
on the PortableMDArray data structure in Ports-of-Call for data storage, which provides an
arbitrary-dimensional accessor to a contiguous block of data, as well as support for slicing,
shallow copying, and resizing data. The latter contains information required to interpolate. The
former contains both the data to interpolate, as well as multiple RegularGrid1Ds. Both objects
know how to read from and write to an HDF5 (The HDF Group, 2000) file, and the intent is
that the RegularGrid1D is a hook that could be extended into a more sophisticated gridding or
interpolation procedure. For example, one could implement a multi-level grid hierarchy or higher-
order interpolation stencils. A DataBox can manage its own memory and can automatically
allocate on host or device at runtime. Deep copies host-to-host and host-to-device are supported.
To encourage good performance, no deep copies are ever implicitly performed—they must
be explicitly requested. Consequently, DataBoxes have reference semantics. By deliberate
choice, DataBoxes are not reference-counted and have trivial destructors. Instead, we provide an
overload of free to free the data. However, DataBoxes can be managed via smart pointers—and
we provide machinery to do so. We find this approach minimizes code complexity and carries
most of the benefits of an automatically reference-counted data structure.

Performance And Accuracy
Since it is usually sufficient for the intended use-cases, only multilinear interpolation is supported,
although as discussed above, hooks are present in the code for more sophisticated approaches.
A convergence test is available in the test suite and shows excellent second-order convergence
as expected. Performance on both CPUs and GPUs is also excellent. For example, the figure
below benchmarks trilinear interpolation at double precision from a 643 grid on to a cubic
grid of varying sizes. We test on a single Intel Xeon (Haswell) core, twenty cores accross two
sockets (with a Kokkos OpenMP backend), and one Nvidia V100 GPU (with the Kokkos Cuda
backend). On the V100, profiling tools report we achieve 15% of peak performance in terms
of flops and 46% of peak in terms of memory bandwidth.
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Figure 1: Performance of trilinear interpolation on one Haswell core, twenty Haswell cores, and a
V100 GPU. Smaller is better. The rightmost point is over 68 billion interpolation operations.
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