
Spiner: Performance Portable Routines for Generic,
Tabulated, Multi-Dimensional Data
Jonah M. Miller ∗1,2, Daniel Holladay2,3, Chad D. Meyer4, Joshua C.
Dolence1,2, Sriram Swaminarayan3, Christopher M. Mauney2,5, and
Karen Tsai3

1 CCS-2, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, NM 2
Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM 3 CCS-7,
Applied Computer Science, Los Alamos National Laboratory, Los ALamos, NM 4 XCP-4, Continuum
Models and Numerical Methods, Los Alamos National Laboratory, Los ALamos, NM 5 HPC-ENV,
HPC Environments, Los Alamo National Laboratory, Los Alamos, NM

DOI: 10.21105/joss.04367

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey

Reviewers:
• @lgarrison
• @jzrake

Submitted: 17 March 2022
Published: 05 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
We present Spiner, a new, performance-portable library for working with tabulated data.
Spiner provides efficient routines for multi-dimensional interpolation and indexing on both
CPUs and GPUs—as well as more exotic hardware—including interwoven interpolation and
indexing access patterns, as needed for radiation transport. Importantly, Spiner defines a
data format, based on HDF5, that couples the tabulated data to the information required to
interpolate it, which Spiner can read and move to GPU.

Statement of Need
As Moore’s law comes to an end, more and more performance comes from specialized hardware,
such as GPUs. A key tool in the toolbox for many scientific codes is tabulated data. Fluid
and continuum dynamics codes often encapsulate the equation of state as data tabulated in
density and temperature, for example as published in the Sesame database (Lyon & Johnson,
1992) or the stellar collapse database (O’Connor & Ott, 2010b), first presented in O’Connor
& Ott (2010a). Radiation transport, such as that performed by Skinner et al. (2019) and
Miller et al. (2019) uses emissivity and absorption opacity on tables such as those computed
in Sullivan et al. (2016). As continuum dynamics is required for a variety of applications, such
as astrophysics, geophysics, climate science, vehicle engineering, and national security, utilizing
a very large number of supercomputer cycles, providing tabulated data for these applications
has the potential for significant impact.

These capabilities must be supported on all hardware a code may be run on, whether this is
an NVIDIA GPU, an Intel CPU, or a next generation accelerator manufactured by one of any
number of hardware vendors. To our knowledge there is no performance portable interpolation
library on which these codes can rely, and there is a clear need, which we have developed
Spiner to meet. Spiner is now used in the open-source and on-going Singularity-EOS (The
Singularity Team, 2022a), Singularity-Opac (The Singularity Team, 2022b), and Phoebus
(The Phoebus Team, 2022) projects, which have separate code papers in preparation.

∗jonahm@lanl.gov

Miller et al. (2022). Spiner: Performance Portable Routines for Generic, Tabulated, Multi-Dimensional Data. Journal of Open Source Software,
7(75), 4367. https://doi.org/10.21105/joss.04367.

1

https://orcid.org/0000-0001-6432-7860
https://doi.org/10.21105/joss.04367
https://github.com/openjournals/joss-reviews/issues/4367
https://github.com/lanl/spiner
https://doi.org/10.5281/zenodo.6800124
https://dfm.io
https://orcid.org/0000-0002-9328-5652
https://github.com/lgarrison
https://github.com/jzrake
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04367


State of the Field
Interpolation is a common problem, implemented countless times across software projects, and
a core part of any introductory text on scientific computing (Press et al., 2007). In graphics
applications, interpolation is so ubiquitous that hardware primitives are provided by GPUs.
These hardware intrinsics are, however, severely limited for scientific application. For example,
on NVIDIA GPUs, the values to be interpolated must be single precision floating point, and the
interpolation coefficients themselves are only half-precision, which is often insufficient to capture
the high precision required for scientific applications. As GPUs are inherently vector devices,
hardware interpolation is also vectorized in nature. However, downstream applications may be
easier to reason about if scalar operations are available. For example, equation of state lookups
often require root finds on interpolated data, and this can be easier to implement as a scalar
operation, even if the final operation is vectorized over warps. Texture interpolation also does
not support multi-dimensional mixed indexing/interpolation operations where, say, three indices
of a four-dimensional array are interpolated and one is merely indexed into. Interpolation in the
inner loop of a root-finding operation can be quite computationally expensive. For example, in
the open-source general relativistic neutrino radiation hydrodynamics code nubhlight (Miller et
al., 2019), these operations cover approximately ten percent of the runtime. For simulations
involving only fluid dynamics and no expensive six-dimensional Boltzmann solve as required for
radiation, the fraction of a timestep can be significantly larger.

Moreover, relying on hardware intrinsics is not a portable solution. A software interpolation
library can, if written with care, work on not only the current generation of accelerators, but
also on general purpose CPUs and the next generation of hardware as well.

Unfortunately, a performance-portable implementation not tuned to a specific use-case or
embedded in a larger project is (to our knowledge) not available in the literature. A common
problem in performance-portable computing is the management of performance-portable data
structures. Libraries, such as Kokkos (Trott et al., 2022), often provide this functionality.

Here we present Spiner, a performance-portable library for working with tabulated data, thus
meeting the needs of simulation codes on emerging hardware. Spiner provides data structures
for working with tabulated data on both CPU and GPU, routines for interpolating on and
indexing into tabulated data, and a file format that couples data to the information required
to interpolate it. Spiner therefore fills a gap in available open software, providing a needed
service for performance-portable simulation codes.

Interpolation is far more ubiquitous than its application in continuum dynamics and radiation
transport, and we expect Spiner will find applications in the broader space of applications,
such as image resampling. However, the team built Spiner with simulations in mind.

Design Principles and Salient Features
We built Spiner with several design goals in mind. First and foremost, interpolation must
be fast, sufficiently fast that interpolation operations are not the rate-limiting operation in
a larger calculation. Second, Spiner must be lightweight. It should contain exactly enough
features to be useful for relevant science applications. Similarly, Spiner must be sufficiently
low-level and flexible that it can support all performance portability strategies and access
patterns required of it. That said, not all needs will be known at conception, and needs change
over time. Thus Spiner must be extendable. Finally, Spiner should be well-documented with
a modern, easy-to-use build system. We believe we have achieved these goals.

To ensure Spiner is lightweight and performant, it is header-only. To ensure performance
portability, we rely on the Kokkos (Trott et al., 2022) library to provide performance portable
data structures and parallel dispatch. However, we recognize that another performance
portability paradigm may be desired. Hence, we developed a separate library, Ports-of-Call,

Miller et al. (2022). Spiner: Performance Portable Routines for Generic, Tabulated, Multi-Dimensional Data. Journal of Open Source Software,
7(75), 4367. https://doi.org/10.21105/joss.04367.

2

https://doi.org/10.21105/joss.04367


which we open-sourced at lanl/ports-of-call on GitHub (The Ports-of-Call Team, 2022). Ports-

of-Call is a very thin abstraction around low-level device calls. It provides preprocessor macros
to enable or disable Kokkos, an arbirtrary-dimensional array data structure, and hooks to add
the same functionality for other backends such as pure CPU, OpenMP (Chandra et al., 2001),
or Cuda (NVIDIA et al., 2020). Ports-of-Call is only a few hundred lines long. Both Spiner
and Ports-of-Call are well documented, with Sphinx documentation provided automatically by
github pages and github actions. They both also have modern build systems, with Cmake and
Spack support. Unit tests are provided by Catch2 (The Catch2 Collaboration, 2013).

The fundamental data structures are the DataBox and RegularGrid1D. The former relies heavily
on the PortableMDArray data structure in Ports-of-Call for data storage, which provides an
arbitrary-dimensional accessor to a contiguous block of data, as well as support for slicing,
shallow copying, and resizing data. The latter contains information required to interpolate. The
former contains both the data to interpolate, as well as multiple RegularGrid1Ds. Both objects
know how to read from and write to an HDF5 (The HDF Group, 2000) file, and the intent is
that the RegularGrid1D is a hook that could be extended into a more sophisticated gridding or
interpolation procedure. For example, one could implement a multi-level grid hierarchy or higher-
order interpolation stencils. A DataBox can manage its own memory and can automatically
allocate on host or device at runtime. Deep copies host-to-host and host-to-device are supported.
To encourage good performance, no deep copies are ever implicitly performed—they must
be explicitly requested. Consequently, DataBoxes have reference semantics. By deliberate
choice, DataBoxes are not reference-counted and have trivial destructors. Instead, we provide an
overload of free to free the data. However, DataBoxes can be managed via smart pointers—and
we provide machinery to do so. We find this approach minimizes code complexity and carries
most of the benefits of an automatically reference-counted data structure.

Performance And Accuracy
Since it is usually sufficient for the intended use-cases, only multilinear interpolation is supported,
although as discussed above, hooks are present in the code for more sophisticated approaches.
A convergence test is available in the test suite and shows excellent second-order convergence
as expected. Performance on both CPUs and GPUs is also excellent. For example, the figure
below benchmarks trilinear interpolation at double precision from a 643 grid on to a cubic
grid of varying sizes. We test on a single Intel Xeon (Haswell) core, twenty cores accross two
sockets (with a Kokkos OpenMP backend), and one Nvidia V100 GPU (with the Kokkos Cuda
backend). On the V100, profiling tools report we achieve 15% of peak performance in terms
of flops and 46% of peak in terms of memory bandwidth.

Miller et al. (2022). Spiner: Performance Portable Routines for Generic, Tabulated, Multi-Dimensional Data. Journal of Open Source Software,
7(75), 4367. https://doi.org/10.21105/joss.04367.

3

https://github.com/lanl/ports-of-call
https://doi.org/10.21105/joss.04367


Figure 1: Performance of trilinear interpolation on one Haswell core, twenty Haswell cores, and a
V100 GPU. Smaller is better. The rightmost point is over 68 billion interpolation operations.

Acknowledgements
This work was supported by the U.S. Department of Energy through the Los Alamos National
Laboratory (LANL). LANL is operated by Triad National Security, LLC, for the National Nuclear
Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001).
This research used resources provided by the Darwin testbed at LANL which is funded by
the Computational Systems and Software Environments subprogram of LANL’s Advanced
Simulation and Computing program (NNSA/DOE). This work is approved for unlimited release
with report number LA-UR-22-22502.

References
Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel

programming in OpenMP. Morgan Kaufmann.

Lyon, S. P., & Johnson, J. D. (1992). Sesame: The Los Alamos National Laboratory equation
of state database (LA-UR-92-3407). Los Alamos National Laboratory.

Miller, J. M., Ryan, Ben. R., & Dolence, J. C. (2019). ν bhlight: Radiation GRMHD for
Neutrino-driven Accretion Flows. The Astrophysical Journal Supplement Series, 241(2),
30. https://doi.org/10.3847/1538-4365/ab09fc

NVIDIA, Vingelmann, P., & Fitzek, F. H. P. (2020). CUDA, release: 10.2.89. https://
developer.nvidia.com/cuda-toolkit

O’Connor, E., & Ott, C. D. (2010a). A new open-source code for spherically symmetric stellar
collapse to neutron stars and black holes. Classical and Quantum Gravity, 27 (11), 114103.
https://doi.org/10.1088/0264-9381/27/11/114103

Miller et al. (2022). Spiner: Performance Portable Routines for Generic, Tabulated, Multi-Dimensional Data. Journal of Open Source Software,
7(75), 4367. https://doi.org/10.21105/joss.04367.

4

https://doi.org/10.3847/1538-4365/ab09fc
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1088/0264-9381/27/11/114103
https://doi.org/10.21105/joss.04367


O’Connor, E., & Ott, C. D. (2010b). Stellar collapse: microphysics. https://stellarcollapse.
org/equationofstate

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes
with source code CD-ROM 3rd edition: The art of scientific computing. Cambridge
University Press. ISBN: 9780521884075

Skinner, M. A., Dolence, J. C., Burrows, A., Radice, D., & Vartanyan, D. (2019). FORNAX:
A flexible code for multiphysics astrophysical simulations. The Astrophysical Journal
Supplement Series, 241(1), 7. https://doi.org/10.3847/1538-4365/ab007f

Sullivan, C., O’Connor, E., Zegers, R. G. T., Grubb, T., & Austin, S. M. (2016). The sensitivity
of core-collapse supernovae to nuclear electron capture. The Astrophysical Journal, 816(1),
44. https://doi.org/10.3847/0004-637X/816/1/44

The Catch2 Collaboration. (2013). Catch2. In GitHub repository. GitHub. https://github.
com/catchorg/Catch2

The HDF Group. (2000). Hierarchical data format version 5. http://www.hdfgroup.org/HDF5

The Phoebus Team. (2022). Phoebus: Phifty one ergs blows up a star. In GitHub repository.
GitHub. https://github.com/lanl/phoebus

The Ports-of-Call Team. (2022). Ports-of-call. In GitHub repository. GitHub. https:
//github.com/lanl/ports-of-call

The Singularity Team. (2022a). Singularity-EOS: Performance portable equations of state. In
GitHub repository. GitHub. https://github.com/lanl/singularity-eos

The Singularity Team. (2022b). Singularity-opac: Performance portable opacities. In GitHub
repository. GitHub. https://github.com/lanl/singularity-opac

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri,
R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D.,
Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., & Wilke, J.
(2022). Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions
on Parallel and Distributed Systems, 33(4), 805–817. https://doi.org/10.1109/TPDS.
2021.3097283

Miller et al. (2022). Spiner: Performance Portable Routines for Generic, Tabulated, Multi-Dimensional Data. Journal of Open Source Software,
7(75), 4367. https://doi.org/10.21105/joss.04367.

5

https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
https://books.google.com/books?id=DyykEZo4fwUC
https://books.google.com/books?id=DyykEZo4fwUC
https://doi.org/10.3847/1538-4365/ab007f
https://doi.org/10.3847/0004-637X/816/1/44
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
http://www.hdfgroup.org/HDF5
https://github.com/lanl/phoebus
https://github.com/lanl/ports-of-call
https://github.com/lanl/ports-of-call
https://github.com/lanl/singularity-eos
https://github.com/lanl/singularity-opac
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.21105/joss.04367

	Summary
	Statement of Need
	State of the Field
	Design Principles and Salient Features
	Performance And Accuracy
	Acknowledgements
	References

