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Summary
Abiotic factors play an important role in most ecological and crop systems that depend on
certain levels of temperature, light and precipitation to initiate important physiological events
(Schulze et al., 2019). Understanding how these factors drive the physiological processes is
a key approach to provide recommendations for adaptation and biodiversity conservation in
applied ecology studies. The package climatrends aims to provide the methods in R (R Core
Team, 2020) to compute precipitation and temperature indices that serve as input for climate
and crop models (Kehel et al., 2016; van Etten et al., 2019), trends in climate change (Aguilar
et al., 2005; de Sousa et al., 2018) and applied ecology (Liu & El-Kassaby, 2018; Prentice et
al., 1992).

Statement of need
Reproducibility, the ability to repeat the analysis, and replicability, the ability to repeat an
experiment (Stevens, 2017), are key to performing collaborative scientific research (Munafò
et al., 2017; Powers & Hampton, 2019). It allows scientists to re-perform analysis after a
long hiatus and peers to validate analysis and get new insights using original or new data.
This is still a gap in most of the studies in agriculture and ecology. climatrends addresses
this specific issue. The package originates from a set of scripts to compute climate indices
in our previous studies (de Sousa et al., 2018; van Etten et al., 2019). Building up on the
interest in expanding the analysis to other regions and to enable reproducible and replicable
studies among different research groups within the CGIAR (https://www.cgiar.org) and partner
institutions we developed climatrends. Most of the package functions take into account
the heterogeneity of testing sites (locations), dates and seasons, a common characteristic of
decentralized agricultural trials (van Etten et al., 2019). Further development was made to
enable time series analysis with fixed periods of time and locations (de Sousa et al., 2018).
The package climatrends computes temperature, precipitation, crop growing and crop stress
indices that were validated by previous studies on climatology and crop science (Aguilar
et al., 2005; Challinor et al., 2016; Kehel et al., 2016). The indices are described in the
package’s documentation. climatrends was released on CRAN in February 2020 and was
the first package to provide methods for agroclimatic indices in R, being able to deal with
site heterogeneity and time series analysis. climatrends is also unique in its integration with
API Client data like NASA POWER (Sparks, 2018), CHIRPS (de Sousa et al., 2020; Funk
et al., 2015) and AgERA5 (Brown et al., 2023; Hersbach et al., 2020). Other packages like
pollen (Nowosad, 2019) and cropgrowdays (Baker & Mortlock, 2021) are limited to growing
degree days, whereas the package agroclim (Serrano-Notivoli, 2022) provides temperature
and precipitation indices but is limited to zoning areas. Currently, climatrends is part of the
CRAN Task View in Agriculture (https://cran.r-project.org/web/views/Agriculture.html) and
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is complementary to agroclim and cropgrowdays.

The package contains eight main functions (Table 1), with a default method for numeric
‘vector’ and additional methods implemented via the package methods (R Core Team, 2020)
for classes ‘matrix’ (or array), ‘data.frame’, and ‘sf’ (of geometry POINT or POLYGON)
(Pebesma, 2018). The last two methods are designed to fetch data using API Client, currently
from the packages nasapower (Sparks, 2018) and chirps (de Sousa et al., 2020).

Table 1: Main functions available in climatrends.

Function Definition

cumdrought() Returns a vector with the cumulative sum of the maximum
length of dry spell (MLDS)

cumrain() Returns a vector with the cumulative sum of the maximum
length of wet spell (MLWS)

crop_sensitive() Compute crop sensitive indices
ETo() Reference evapotranspiration using the Blaney-Criddle method
GDD() Compute growing degree-days
late_frost() Compute the occurrence of late-spring frost
rainfall() Precipitation indices
temperature() Temperature indices

Application: a case study with common bean on-farm trials
During five growing seasons (from 2015 to 2017) in Nicaragua, van Etten et al. (2019)
conducted a crowdsourced on-farm trial experiment following the tricot approach (van Etten
et al., 2016) testing 11 common bean varieties (Phaseolus vulgaris L.) as incomplete blocks
of three randomly allocated to 842 blocks. A Plackett–Luce model was used to analyse
the data. The model estimates the worth, the probability of each variety to outperform all
the others in the set (Luce, 1959; Plackett, 1975; Turner et al., 2020). Here we reproduce
part of this analysis on the calculation and application of the climate indices. The approach
here is slightly different because it considers the growing-degree days from planting date to
maturity and add new indices to illustrate the package implementation. The data is available
as data("commonbean", package = "climatrends").

We estimate the crop phenological stages based on the growing degree-days using the function
GDD(). For common bean, we define 900 degree-days, from planting date to maturity (de
Medeiros et al., 2016). The input data is an array with the MODIS temperature data (Wan
et al., 2015), the vector with planting dates (cbean$planting_date), the required amount of
degree-days passed to the argument degree.days and the character string ‘ndays’ specifying
that the function must return the values as number of days. GDD() computes the degree-days for
the time series and return the length of the vector where the accumulated growing degree-days
reached the pre-defined threshold of 900 degree-days.

The degree-days spanned from 54 to 100 days as shown in Fig. 1a. For simplicity we take the
average per season and use this vector to compute the temperature indices.

library("climatrends")

library("PlackettLuce")

library("tidyverse")

data("commonbean", package = "climatrends")

cbean <- commonbean[[1]]

modis <- commonbean[[2]]
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# number of days required to accumulate gdd from planting date to maturity

gdd <- GDD(modis,

day.one = cbean$planting_date,

degree.days = 900,

return.as = "ndays")

# gdd to the cbean data and take the average gdd per season

cbean %<>%

mutate(gdd = gdd$gdd) %>%

group_by(season) %>%

mutate(gdd_season = as.integer(mean(gdd)))

To compute the temperature indices we use the function temperature(). In van Etten (2019),
a forward variable selection was applied to retain the most representative covariates based
on the deviance reduction. This analysis retained the maximum night temperature (maxNT)
as the most representative covariate. To illustrate how the Plackett-Luce trees can grow in
complexity as we add more indices, we included the summer days (SU, number of days with
maximum day temperature > 30 ∘𝐶) together with maxNT.

# temperature indices from planting date to the

# number of days required to accumulate the gdd in each season

temp <- temperature(modis,

day.one = cbean$planting_date,

span = cbean$gdd_season)

cbean <- cbind(cbean, temp)

# fit a Plackett-Luce tree

plt <- pltree(G ~ maxNT + SU, data = cbean, minsize = 50)

Seasonal distribution of maxNT captured for each incomplete block in this experiment is shown
in Fig. 1b. The data has a bimodal distribution which is reflected in the splitting value (18.7
∘𝐶) for the Plackett-Luce trees in Fig. 1c. The upper node splits with 49 summer days (SU).
We can interpret these results as that the on-farm performance of common bean varieties is
driven by heat accumulation of diurnal temperature above 30 ∘𝐶 (in this case >70% of the
growing days) and warmer nights (> 18.7 ∘𝐶).
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Figure 1: Fig. 1. Application of climatrends functions to support the analysis of decentralized on-farm
trial data. (A) Days required to reach 900 growing-degree days from planting date calculated using the
function GDD(). (B) Maximum night temperature (°C) distributed across seasons computed using the
function temperature(). (C) Plackett-Luce Tree showing the probability that a given variety outperforms
the other varieties (axys X) in three different nodes splitted with the summer days (day temperature
> 30 °C) and maximum night temperature (°C). Note: the first season (primera, Pr) spans from May
to August, the second (postrera, Po) from September to October, and the third (apante, Ap) from
November to January.

Further development
The package can support the integration with other datasets as they become available in R

via API client packages. In the future, new indices related to the physiology of crops could
be implemented. Integration with daily high resolution climate data and seasonal forecast for
East Africa from Tomorrow.io’s Comprehensive Bespoke Atmospheric Model (CBAM) is under
development. To explore the latest functionalities of climatrends, please check the package’s
updates at CRAN (https://cran.r-project.org/package=climatrends).
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