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Summary

The causact package provides R functions for visualizing and running inference on generative
directed acyclic graphs (DAGs). Once a generative DAG is created, the package automates
Bayesian inference via the greta package (Golding, 2019) and TensorFlow (Dillon et al., 2017).
The package eliminates the need for three separate versions of a model: 1) the narrative
describing the problem, 2) the statistical model representing the problem, and 3) the code
enabling inference written in a probabilistic programming language. Instead, causact users
create one unified model, a generative DAG, using a visual representation.

Statement of Need

Bayesian data analysis mixes data with domain knowledge to quantify uncertainty in unknown
outcomes. lts beautifully-simple theoretical underpinnings are deployed in three main steps
(Gelman et al., 2013):

= Modelling: Joint probability distributions are specified to encode domain knowledge
about potential data generating processes.

= Conditioning: Bayes rule is used to reallocate plausibility among the potential data
generating processes to be consistent with both the encoded domain knowledge and the
observed data. The conditioned model is known as the posterior distribution.

= Validation: Evidence is collected to see whether the specified model as well as the
computational implementation of the model and conditioning process are to be trusted
or not.

Algorithmic advances in the conditioning step of Bayesian data analysis have given rise to
a new class of programming languages called probabilistic programming languages (PPLs).
Practical and complex statistical models which are analytically intractable can now be solved
computationally using inference algorithms. In particular, Markov Chain Monte Carlo (MCMC)
algorithms (Congdon, 2010; Gelfand & Smith, 1990; Gilks & Roberts, 1996) handle arbitrarily
large and complex models via highly effective sampling processes that quickly detect high-
probability areas of the underlying distribution Kruschke (2014).

The causact package, presented in this paper, focuses on solving a three-language problem
that occurs during Bayesian data analysis. First, there is the language of the domain expert
which we refer to as the narrative of how data is generated. Second, there is the language
of math where a statistical model, amenable to inference, is written. Lastly, there is the
language of code, where a PPL language supports computational inference from a well-defined
statistical model. The existence of these three languages creates friction as diverse stakeholders
collaborate to yield insight from data; often mistakes get made in both communicating and
translating between the three languages. Prior to causact, any agreed upon narrative of a
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data-generating process must ultimately be modelled in code using an error-prone process
where model misspecification, variable indexing errors, prior distribution omissions, and other
mismatches between desired model and coded model go easily unnoticed.

To unify inference-problem narratives, the statistical models representing those narratives, and
the code implementing the statistical models, causact introduces a modified visualization
of directed acyclic graphs (DAGs), called the generative DAG, to serve as a more intuitive
and collaborative interface into probabilistic programming languages and to ensure faithful
abstractions of real-world data generating processes.

Modelling with Generative DAGs

Generative DAGs pursue two simultaneous goals. One goal is to capture the narrative by
building a conceptual understanding of the data generating process that lends itself to statistical
modelling. And the second goal is to gather all the mathematical elements needed for specifying
a complete Bayesian model of the data generating process. Both of these goals will be satisfied
by iteratively assessing the narrative and the narrative’s translation into rigorous mathematics
using causact functions.

Capturing the narrative in code uses the core causact functions dag_create( ), dag_node( ),
dag_edge( ), and dag_plate() which are connected via the chaining operator %>% to build
a DAG. dag_render() or dag_greta() are then used to visualize the DAG or run inference
on the DAG, respectively. The simplicity with which generative DAGs are constructed belies
the complexity of models which can be supported. For example, multi-level or hierarchical
models are easily constructed as shown below in code for constructing and visualizing an
experiment about chimpanzees (McElreath, 2020b); related data is included in causact
(causact::chimpanzeesDF). Each chimpanzee “actor” is given a choice to pull one of two
levers - right or left. Depending on the lever pulled, the chimpanzee is either acting prosocially,
pulling the lever which feeds both himself and a partner, or not prosocially where only the
lever-pulling chimpanzee receives food. Figure 1 depicts a varying intercepts model where a
baseline proclivity to pull the left lever varies with each of the seven chimpanzee actors being
observed.

## load packages for example
library(greta)
library(causact)
library(tidyverse)
## get only the experiments with partner present
chimpDF = causact::chimpanzeesDF %>% filter(condition == 1)
## create model
graph = dag_create() %>%
dag_node(”Pull Left”,”L",
rhs = bernoulli(theta),
data = chimpDF$pulled_left) %>%
dag_node(”Prob. Pull Left”,”theta”,
rhs =1/ (1 + exp(-y)),
child = "L") %>%
dag_node("”Linear Predictor”,”y”,
rhs = alpha + alpha_i + beta * prosoc_left,
child = "theta”) %>%
dag_node(”Global Intercept”,”alpha”,
rhs = normal(0,10)) %>%
dag_node("”Actor Intercept”,”alpha_i",
rhs = normal(0,sigma_1i)) %>%
dag_node("”Prosocial Coefficient”,”beta”,
rhs = normal(0,10)) %>%
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" on

dag_node("”Left Prosocial Flag”,”prosoc_left”,
data = chimpDF$prosoc_left) %>%

non non

dag_edge(c("”alpha”,”alpha_i","”beta”,”prosoc_left”),”y"”) %>%
dag_node(”Actor Variability”,”sigma_1",

rhs = cauchy(0,1,trunc = c(0,Inf)),

child = "alpha_i1") %>%
dag_plate(”Actor”,”i1"”,

nodelLabels = c(”alpha_1i"),

data = chimpDF$actor,

addDataNode = TRUE) %>%

dag_plate(”0Observation”,”]
nodelLabels = c(”prosoc_left”,”i”,"”y"”,"theta”,”L"))

graph %>% dag_render()
Actor Variability
sigma_i ~ cauchy(0,1,trunc=c(0, Inf))
Prosocial Coefficient Actor Intercept
beta ~ normal(0,10) alpha_i ~ normal(0,sigma_i)
Linear Predictor &
y = alpha + alpha_i[i] + beta * prosoc_left

e Actori[7]
Prob. Pull Left

theta = 1/ (1 + exp(-y))

Global Intercept
alpha ~ normal(0,10)

Observation j [252]

Figure 1: A generative DAG of modelling chimpanzee behavior.

Figure 2 replicates Figure 1 without math for less intimidating discussions with domain experts
about the model using the shortLabel = TRUE argument (shown below). causact does not
require a complete model specification prior to rendering the DAG, hence, causact facilitates
qualitative collaboration on the model design between less technical domain experts and the
model builder.

graph %>% dag_render(shortLabel = TRUE)
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Actor Variability

Actor Intercept

/,// Actori[7]

Prosocial Coefficient

Linear Predictor W[~~~

Prob. Pull Left

Global Intercept

Observation j [252]

Figure 2: Hiding mathematical details to facilitate collaborations with domain experts.

All visualizations, including Figure 1 and Figure 2, are created via causact's calls to
the DiagrammeR package (lannone, 2020). The dag_diagrammer() function can convert
a causact_graph to a dgr_graph (the main object when using DiagrammeR) for further
customizing of a visualization using the DiagrammeR package.

Sampling from the posterior of the chimpanzee model (Figure 1) does not require a user to
write PPL code, but rather a user will simply pass the generative DAG object to dag_greta()
and then inspect the data frame of posterior draws:

library(greta) ## greta uses TensorFlow to get sample
drawsDF = graph %>% dag_greta()
drawsDF

## # A tibble: 4,000 x 10
## alpha alpha_i_1 alpha_i_2 alpha_i_3 alpha_i_4 alpha_i_5 alpha_i_6

## <dbl> <dbl> <db1l> <db1l> <db1l> <db1l> <dbl>
# 1 0.227 -1.01 3.58 -1.40 -1.50 -0.963 0.133
# 2 0.227 -1.01 3.58 -1.40 -1.50 -0.963 0.133
# 3 -0.204 -0.489 3.84 -1.43 -1.14 -0.253 0.863
# 4 0.221 -0.503 3.83 -1.30 -0.835 -0.212 0.0866
## 5 0.189 -1.54 3.99 -1.27 -1.85 -1.60 0.0299
# 6 1.14 -1.58 2.20 -3.06 -2.58 -2.00 -1.41
## 7 -0.195 -0.405 2.75 -1.53 -0.849 -0.750 -0.481
## 8 0.832 -2.04 2.96 -3.12 -2.65 -1.67 -1.71
## 9 1.91 -2.78 1.78 -3.98 -3.15 -2.97 -2.46
## 10 1.01 -2.52 6.37 -2.74 -3.09 -2.37 -0.957
## # with 3,990 more rows, and 3 more variables: alpha_i_7 <dbl>,

## beta <dbl>, sigma_i <dbl>

Behind the scenes, causact creates the model's code equivalent using the greta PPL, but this
is typically hidden from the user. However, for debugging or further customizing a model, the
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greta code can be printed to the screen without executing it by setting the mcmc argument to
FALSE:

graph %>% dag_greta(mcmc=FALSE)

## prosoc_left <- as_data(chimpDF$prosoc_left)  #DATA

## L <- as_data(chimpDF$pulled_left) #DATA

## 1 <- as.factor(chimpDF$actor) #DIM

## 1_dim <- length(unique(i)) #DIM

## alpha <- normal(mean = 0, sd = 10) #PRIOR
## beta <- normal(mean = 0, sd = 10) #PRIOR
## sigma_i <- cauchy(location = 0, scale = 1, trunc = c(0, Inf)) #PRIOR
## alpha_i <- normal(mean = 0, sd = sigma_i, dim = i_dim) #PRIOR
##y <- alpha + alpha_i[1] + beta * prosoc_left #OPERATION

## theta <- 1/ (1 + exp(-y)) #OPERATION

## distribution(L) <- bernoulli(prob = theta) #LIKELIHOOD
## gretaModel <- model(alpha,alpha_1i,beta,sigma_1) #MODEL
## meaningfullLabels(graph)

## draws <- mcmc(gretaModel) #POSTERIOR
## drawsDF <- replacelLabels(draws) %>% as.matrix() %>%
# dplyr::as_tibble() #POSTERIOR

## tidyDrawsDF <- drawsDF %>% addPriorGroups() #POSTERIOR

The produced greta code is shown in the above code snippet. The code can be difficult to
digest for some and exemplifies the advantages of working visually using causact. The above
code is also challenging to write without error or misinterpretation. Indexing is particularly
tricky in PPL's and causact abbreviates posterior parameters using indexes as determined by
provided data (e.g. as.factor(chimpDF$actor)) and not by arbitrary numbering of factors in
order of appearance.

The output of dag_greta() is in the form of a data frame of draws from the joint posterior.
To facilitate a quick look into posterior estimates, the dagp_plot() function creates a simple
visual of 90% credible intervals. It is the only core function that does not take a graph as
its first argument. By grouping all parameters that share the same prior distribution and
leveraging the meaningful parameter names constructed using dag_greta( ), it allows for quick
comparisons of parameter values.

drawsDF %>% dagp_plot()
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Figure 3: Visualizing 10% (darker fill) and 90% (lighter fill) credible intervals for latent parameters.

The code above makes the plot in Figure 3 showing credible intervals for unobserved latent
parameters. For example, alpha_1i_2 represents a chimp with strong preference for pulling the
left lever; this chimp is affectionately referred to as “Lefty”. For further posterior plotting, users
would make their own plots using ggplot2 (Wickham, 2016), ggdist (Kay, 2020), or similar.
For further model validation, including MCMC diagnostics, the user would use a package like
bayesplot (Gabry et al., 2019) or shinystan (Gabry, 2018). For users who prefer to work
with an mcmc object, they can extract the draws object after running the generated greta code
from dag_greta(mcmc=FALSE) or find the object in the cacheEnv environment after running
dag_greta(mcmc=FALSE) using get(”draws”,envir = causact:::cacheEnv).

Comparison to Other Packages

By focusing on generative DAG creation as opposed to PPL code, causact liberates users
from the need to learn complicated probabilistic programming languages. As such, it is
similar in spirit to any package whose goal is to make Bayesian inference accessible without
learning a PPL. Perhaps the first such software was DoodleBUGS which provided a DAG-based
graphical interface into WinBUGS(Lunn et al., 2000). In terms of leveraging more modern
PPLs, causact is similar to brms (Biirkner, 2017), rstanarm (Goodrich et al., 2020), and
rethinking (McElreath, 2020a) - three R packages which leverage Stan (Stan Development
Team, 2021) for Bayesian statistical inference with MCMC sampling. Like the rethinking
package which is tightly integrated with a textbook (McElreath, 2020b), a large motivation
for developing causact was to make learning Bayesian inference easier. The package serves
a central role in a textbook titled A Business Analyst’s Introduction to Business Analytics:
Intro to Bayesian Business Analytics in the R Ecosystem. (Fleischhacker, 2020). As a point of
contrast, the DAGitty package (Textor et al., 2017) also focuses on DAG creation /visualization,
but DAGitty's intent is to help ensure consistency between the causal assumptions of a
researcher and the dataset to which those assumptions should apply; DAGitty does not create
PPL code for automating inference.

Conclusion

The causact modelling syntax is flexible and encourages modellers to make bespoke models. The
long-term plan for the causact package is to promote a Bayesian workflow that philosophically
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mimics the Principled Bayesian Workflow outlined by Betancourt (2020). The structure of a
generative DAG is sure to be much more transparent and interpretable than most other modern
machine learning workflows; this is especially true when models are made accessible to those
without statistical or coding expertise. For this reason, generative DAGs can help facilitate
effective communication between modelers and domain users both during the designing process
of the models and when explaining the results returned by the models.
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