The Journal of Open Source Software

DOI: 10.21105/joss.04415

Software
= Review @@
= Repository &7
= Archive &2

Editor: Arfon Smith @
Reviewers:

= Qjoethorley
= ©@ChristopherLucas

Submitted: 27 April 2022
Published: 12 August 2022

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Generative DAGs as an Interface Into Probabilistic
Programming with the R Package causact

Adam J. Fleischhacker ®! and Thi Hong Nhung Nguyen?

1 Adam Fleischhacker, JP Morgan Chase Faculty Fellow, University of Delaware, Newark, DE 19716 2
Institute for Financial Services Analytics, University of Delaware, Newark, DE 19716

Summary

The causact package provides R functions for visualizing and running inference on generative
directed acyclic graphs (DAGs). Once a generative DAG is created, the package automates
Bayesian inference via the greta package (Golding, 2019) and TensorFlow (Dillon et al., 2017).
The package eliminates the need for three separate versions of a model: 1) the narrative
describing the problem, 2) the statistical model representing the problem, and 3) the code
enabling inference written in a probabilistic programming language. Instead, causact users
create one unified model, a generative DAG, using a visual representation.

Statement of Need

Bayesian data analysis mixes data with domain knowledge to quantify uncertainty in unknown
outcomes. lts beautifully-simple theoretical underpinnings are deployed in three main steps
(Gelman et al., 2013):

= Modelling: Joint probability distributions are specified to encode domain knowledge
about potential data generating processes.

= Conditioning: Bayes rule is used to reallocate plausibility among the potential data
generating processes to be consistent with both the encoded domain knowledge and the
observed data. The conditioned model is known as the posterior distribution.

= Validation: Evidence is collected to see whether the specified model as well as the
computational implementation of the model and conditioning process are to be trusted
or not.

Algorithmic advances in the conditioning step of Bayesian data analysis have given rise to
a new class of programming languages called probabilistic programming languages (PPLs).
Practical and complex statistical models which are analytically intractable can now be solved
computationally using inference algorithms. In particular, Markov Chain Monte Carlo (MCMC)
algorithms (Congdon, 2010; Gelfand & Smith, 1990; Gilks & Roberts, 1996) handle arbitrarily
large and complex models via highly effective sampling processes that quickly detect high-
probability areas of the underlying distribution Kruschke (2014).

The causact package, presented in this paper, focuses on solving a three-language problem
that occurs during Bayesian data analysis. First, there is the language of the domain expert
which we refer to as the narrative of how data is generated. Second, there is the language
of math where a statistical model, amenable to inference, is written. Lastly, there is the
language of code, where a PPL language supports computational inference from a well-defined
statistical model. The existence of these three languages creates friction as diverse stakeholders
collaborate to yield insight from data; often mistakes get made in both communicating and
translating between the three languages. Prior to causact, any agreed upon narrative of a

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 1
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://orcid.org/0000-0003-2871-4788
https://doi.org/10.21105/joss.04415
https://github.com/openjournals/joss-reviews/issues/4415
https://github.com/flyaflya/causact/
https://doi.org/10.5281/zenodo.6949489
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/joethorley
https://github.com/ChristopherLucas
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04415

The Journal of Open Source Software

data-generating process must ultimately be modelled in code using an error-prone process
where model misspecification, variable indexing errors, prior distribution omissions, and other
mismatches between desired model and coded model go easily unnoticed.

To unify inference-problem narratives, the statistical models representing those narratives, and
the code implementing the statistical models, causact introduces a modified visualization
of directed acyclic graphs (DAGs), called the generative DAG, to serve as a more intuitive
and collaborative interface into probabilistic programming languages and to ensure faithful
abstractions of real-world data generating processes.

Modelling with Generative DAGs

Generative DAGs pursue two simultaneous goals. One goal is to capture the narrative by
building a conceptual understanding of the data generating process that lends itself to statistical
modelling. And the second goal is to gather all the mathematical elements needed for specifying
a complete Bayesian model of the data generating process. Both of these goals will be satisfied
by iteratively assessing the narrative and the narrative’s translation into rigorous mathematics
using causact functions.

Capturing the narrative in code uses the core causact functions dag_create(), dag_node(),
dag_edge(), and dag_plate() which are connected via the chaining operator %>% to build
a DAG. dag_render() or dag_greta() are then used to visualize the DAG or run inference
on the DAG, respectively. The simplicity with which generative DAGs are constructed belies
the complexity of models which can be supported. For example, multi-level or hierarchical
models are easily constructed as shown below in code for constructing and visualizing an
experiment about chimpanzees (McElreath, 2020b); related data is included in causact
(causact::chimpanzeesDF). Each chimpanzee “actor” is given a choice to pull one of two
levers - right or left. Depending on the lever pulled, the chimpanzee is either acting prosocially,
pulling the lever which feeds both himself and a partner, or not prosocially where only the
lever-pulling chimpanzee receives food. Figure 1 depicts a varying intercepts model where a
baseline proclivity to pull the left lever varies with each of the seven chimpanzee actors being
observed.

load packages for example
library(greta)
library(causact)
library(tidyverse)
get only the experiments with partner present
chimpDF = causact::chimpanzeesDF %>% filter(condition == 1)
create model
graph = dag_create() %>%
dag_node(”Pull Left”,”L",
rhs = bernoulli(theta),
data = chimpDF$pulled_left) %>%
dag_node(”Prob. Pull Left”,”theta”,
rhs =1/ (1 + exp(-y)),
child = "L") %>%
dag_node("”Linear Predictor”,”y”,
rhs = alpha + alpha_i + beta * prosoc_left,
child = "theta”) %>%
dag_node(”Global Intercept”,”alpha”,
rhs = normal(0,10)) %>%
dag_node("”Actor Intercept”,”alpha_i",
rhs = normal(0,sigma_1i)) %>%
dag_node("”Prosocial Coefficient”,”beta”,
rhs = normal(0,10)) %>%

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 2
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://doi.org/10.21105/joss.04415

SS

The Journal of Open Source Software

" on

dag_node("”Left Prosocial Flag”,”prosoc_left”,
data = chimpDF$prosoc_left) %>%

non non

dag_edge(c("”alpha”,”alpha_i","”beta”,”prosoc_left”),”y"”) %>%
dag_node(”Actor Variability”,”sigma_1",

rhs = cauchy(0,1,trunc = c(0,Inf)),

child = "alpha_i1") %>%
dag_plate(”Actor”,”i1"”,

nodelLabels = c(”alpha_1i"),

data = chimpDF$actor,

addDataNode = TRUE) %>%

dag_plate(”0Observation”,”]
nodelLabels = c(”prosoc_left”,”i”,"”y"”,"theta”,”L"))

graph %>% dag_render()
Actor Variability
sigma_i ~ cauchy(0,1,trunc=c(0, Inf))
Prosocial Coefficient Actor Intercept
beta ~ normal(0,10) alpha_i ~ normal(0,sigma_i)
Linear Predictor &
y = alpha + alpha_i[i] + beta * prosoc_left

e Actori[7]
Prob. Pull Left

theta = 1/ (1 + exp(-y))

Global Intercept
alpha ~ normal(0,10)

Observation j [252]

Figure 1: A generative DAG of modelling chimpanzee behavior.

Figure 2 replicates Figure 1 without math for less intimidating discussions with domain experts
about the model using the shortLabel = TRUE argument (shown below). causact does not
require a complete model specification prior to rendering the DAG, hence, causact facilitates
qualitative collaboration on the model design between less technical domain experts and the
model builder.

graph %>% dag_render(shortLabel = TRUE)

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 3
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://doi.org/10.21105/joss.04415

The Journal of Open Source Software

Actor Variability

Actor Intercept

/,// Actori[7]

Prosocial Coefficient

Linear Predictor W[~~~

Prob. Pull Left

Global Intercept

Observation j [252]

Figure 2: Hiding mathematical details to facilitate collaborations with domain experts.

All visualizations, including Figure 1 and Figure 2, are created via causact's calls to
the DiagrammeR package (lannone, 2020). The dag_diagrammer() function can convert
a causact_graph to a dgr_graph (the main object when using DiagrammeR) for further
customizing of a visualization using the DiagrammeR package.

Sampling from the posterior of the chimpanzee model (Figure 1) does not require a user to
write PPL code, but rather a user will simply pass the generative DAG object to dag_greta()
and then inspect the data frame of posterior draws:

library(greta) ## greta uses TensorFlow to get sample
drawsDF = graph %>% dag_greta()
drawsDF

A tibble: 4,000 x 10
alpha alpha_i_1 alpha_i_2 alpha_i_3 alpha_i_4 alpha_i_5 alpha_i_6

<dbl> <dbl> <db1l> <db1l> <db1l> <db1l> <dbl>
1 0.227 -1.01 3.58 -1.40 -1.50 -0.963 0.133
2 0.227 -1.01 3.58 -1.40 -1.50 -0.963 0.133
3 -0.204 -0.489 3.84 -1.43 -1.14 -0.253 0.863
4 0.221 -0.503 3.83 -1.30 -0.835 -0.212 0.0866
5 0.189 -1.54 3.99 -1.27 -1.85 -1.60 0.0299
6 1.14 -1.58 2.20 -3.06 -2.58 -2.00 -1.41
7 -0.195 -0.405 2.75 -1.53 -0.849 -0.750 -0.481
8 0.832 -2.04 2.96 -3.12 -2.65 -1.67 -1.71
9 1.91 -2.78 1.78 -3.98 -3.15 -2.97 -2.46
10 1.01 -2.52 6.37 -2.74 -3.09 -2.37 -0.957
with 3,990 more rows, and 3 more variables: alpha_i_7 <dbl>,

beta <dbl>, sigma_i <dbl>

Behind the scenes, causact creates the model's code equivalent using the greta PPL, but this
is typically hidden from the user. However, for debugging or further customizing a model, the

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 4
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://doi.org/10.21105/joss.04415

The Journal of Open Source Software

greta code can be printed to the screen without executing it by setting the mcmc argument to
FALSE:

graph %>% dag_greta(mcmc=FALSE)

prosoc_left <- as_data(chimpDF$prosoc_left) #DATA

L <- as_data(chimpDF$pulled_left) #DATA

1 <- as.factor(chimpDF$actor) #DIM

1_dim <- length(unique(i)) #DIM

alpha <- normal(mean = 0, sd = 10) #PRIOR
beta <- normal(mean = 0, sd = 10) #PRIOR
sigma_i <- cauchy(location = 0, scale = 1, trunc = c(0, Inf)) #PRIOR
alpha_i <- normal(mean = 0, sd = sigma_i, dim = i_dim) #PRIOR
##y <- alpha + alpha_i[1] + beta * prosoc_left #OPERATION

theta <- 1/ (1 + exp(-y)) #OPERATION

distribution(L) <- bernoulli(prob = theta) #LIKELIHOOD
gretaModel <- model(alpha,alpha_1i,beta,sigma_1) #MODEL
meaningfullLabels(graph)

draws <- mcmc(gretaModel) #POSTERIOR
drawsDF <- replacelLabels(draws) %>% as.matrix() %>%
dplyr::as_tibble() #POSTERIOR

tidyDrawsDF <- drawsDF %>% addPriorGroups() #POSTERIOR

The produced greta code is shown in the above code snippet. The code can be difficult to
digest for some and exemplifies the advantages of working visually using causact. The above
code is also challenging to write without error or misinterpretation. Indexing is particularly
tricky in PPL's and causact abbreviates posterior parameters using indexes as determined by
provided data (e.g. as.factor(chimpDF$actor)) and not by arbitrary numbering of factors in
order of appearance.

The output of dag_greta() is in the form of a data frame of draws from the joint posterior.
To facilitate a quick look into posterior estimates, the dagp_plot() function creates a simple
visual of 90% credible intervals. It is the only core function that does not take a graph as
its first argument. By grouping all parameters that share the same prior distribution and
leveraging the meaningful parameter names constructed using dag_greta(), it allows for quick
comparisons of parameter values.

drawsDF %>% dagp_plot()

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 5
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://doi.org/10.21105/joss.04415

The Journal of Open Source Software

alpha_i_2 | |

alpha_i_7 [|

alpha_i_6 1

alpha_i_1 1

alpha_i_5 |

alpha_i_4 | |

alpha_i_3 []

-1 0 1 2 -4 0 4 8
parameter value parameter value

beta]

alpha |

sigma_i ||

2 3 4
parameter value
Credible Intervals - 10% (dark) & 90% (light)

Figure 3: Visualizing 10% (darker fill) and 90% (lighter fill) credible intervals for latent parameters.

The code above makes the plot in Figure 3 showing credible intervals for unobserved latent
parameters. For example, alpha_1i_2 represents a chimp with strong preference for pulling the
left lever; this chimp is affectionately referred to as “Lefty”. For further posterior plotting, users
would make their own plots using ggplot2 (Wickham, 2016), ggdist (Kay, 2020), or similar.
For further model validation, including MCMC diagnostics, the user would use a package like
bayesplot (Gabry et al., 2019) or shinystan (Gabry, 2018). For users who prefer to work
with an mcmc object, they can extract the draws object after running the generated greta code
from dag_greta(mcmc=FALSE) or find the object in the cacheEnv environment after running
dag_greta(mcmc=FALSE) using get(”draws”,envir = causact:::cacheEnv).

Comparison to Other Packages

By focusing on generative DAG creation as opposed to PPL code, causact liberates users
from the need to learn complicated probabilistic programming languages. As such, it is
similar in spirit to any package whose goal is to make Bayesian inference accessible without
learning a PPL. Perhaps the first such software was DoodleBUGS which provided a DAG-based
graphical interface into WinBUGS(Lunn et al., 2000). In terms of leveraging more modern
PPLs, causact is similar to brms (Biirkner, 2017), rstanarm (Goodrich et al., 2020), and
rethinking (McElreath, 2020a) - three R packages which leverage Stan (Stan Development
Team, 2021) for Bayesian statistical inference with MCMC sampling. Like the rethinking
package which is tightly integrated with a textbook (McElreath, 2020b), a large motivation
for developing causact was to make learning Bayesian inference easier. The package serves
a central role in a textbook titled A Business Analyst’s Introduction to Business Analytics:
Intro to Bayesian Business Analytics in the R Ecosystem. (Fleischhacker, 2020). As a point of
contrast, the DAGitty package (Textor et al., 2017) also focuses on DAG creation /visualization,
but DAGitty's intent is to help ensure consistency between the causal assumptions of a
researcher and the dataset to which those assumptions should apply; DAGitty does not create
PPL code for automating inference.

Conclusion

The causact modelling syntax is flexible and encourages modellers to make bespoke models. The
long-term plan for the causact package is to promote a Bayesian workflow that philosophically

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 6
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://doi.org/10.21105/joss.04415

The Journal of Open Source Software

mimics the Principled Bayesian Workflow outlined by Betancourt (2020). The structure of a
generative DAG is sure to be much more transparent and interpretable than most other modern
machine learning workflows; this is especially true when models are made accessible to those
without statistical or coding expertise. For this reason, generative DAGs can help facilitate
effective communication between modelers and domain users both during the designing process
of the models and when explaining the results returned by the models.

Acknowledgements

The Stan Development team has been inspirational for this work and has formed a wonderful
Bayesian inference community around their powerful language. Additionally, the books of
Kruschke (2014) and McElreath (2020b) are tremendous resources for learning Bayesian data
analysis and their pedagogy is aspirational. This work would not be possible without the
greta dev team and special thanks to Nick Golding and Nick Tierney. Lastly, thanks to the
University of Delaware students, MBAs and PhDs, who have contributed time, code, testing,
and enthusiasm for this project from its beginning.

References

Betancourt, M. (2020). Towards a principled Bayesian workflow. https://betanalpha.github.
io/assets/case_studies/principled_bayesian_workflow.html.

Biirkner, P.-C. (2017). Brms: An r package for Bayesian multilevel models using stan. Journal
of Statistical Software, 80(1), 1-28. https://doi.org/10.18637 /jss.v080.i01

Congdon, P. D. (2010). Applied Bayesian hierarchical methods. CRC Press. https://doi.org/
10.1201/9781584887218

Dillon, J. V., Langmore, |., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B.,
Alemi, A., Hoffman, M., & Saurous, R. A. (2017). Tensorflow distributions. arXiv Preprint
arXiv:1711.10604. https://arxiv.org/abs/1711.10604

Fleischhacker, A. (2020). A business analyst’s introduction to business analytics: In-
tro to Bayesian business analytics in the r ecosystem. Independently Published.
ISBN: 9798667128175

Gabry, J. (2018). Shinystan: Interactive visual and numerical diagnostics and posterior analysis
for Bayesian models. https://mc-stan.org/users/interfaces/shinystan

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization
in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 182(2), 389-402. https://doi.org/10.1111/rssa.12378

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410), 398—409. https:
//doi.org/10.2307 /2289776

Gelman, A., Carlin, J. B, Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian data analysis. CRC press. http://www.stat.columbia.edu/~gelman/book/

Gilks, W. R., & Roberts, G. O. (1996). Strategies for improving MCMC. Markov Chain Monte
Carlo in Practice, 6, 89-114.

Golding, N. (2019). Greta: Simple and scalable statistical modelling in R. Journal of Open
Source Software, 4(40), 1601. https://doi.org/10.21105/joss.01601

Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2020). Rstanarm: Bayesian applied regression
modeling via Stan. https://mc-stan.org/rstanarm

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 7
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1201/9781584887218
https://doi.org/10.1201/9781584887218
https://arxiv.org/abs/1711.10604
https://mc-stan.org/users/interfaces/shinystan
https://doi.org/10.1111/rssa.12378
https://doi.org/10.2307/2289776
https://doi.org/10.2307/2289776
http://www.stat.columbia.edu/~gelman/book/
https://doi.org/10.21105/joss.01601
https://mc-stan.org/rstanarm
https://doi.org/10.21105/joss.04415

SS

The Journal of Open Source Software

lannone, R. (2020). DiagrammeR: Graph/network visualization. https://github.com/
rich-iannone/DiagrammeR

Kay, M. (2020). ggdist: Visualizations of distributions and uncertainty. https://doi.org/10.
5281/zenodo.3879620

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with r, JAGS, and stan.
https://sites.google.com /site/doingbayesiandataanalysis/

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS - a Bayesian
modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10,
325-337. https://doi.org/10.1023/A:1008929526011

McElreath, R. (2020a). Rethinking: Statistical rethinking book package. https://github.com/
rmcelreath/rethinking

McElreath, R. (2020b). Statistical rethinking: A Bayesian course with examples in R and
Stan. CRC press. https://doi.org/10.1201/9780429029608

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. De-
partment of Computer Science, University of Toronto Toronto, Ontario, Canada.

Pfeffer, A. (2016). Practical probabilistic programming. Manning Publ. ISBN: 9781617292330

Stan Development Team. (2021). Stan Modeling Language User’'s Guide and Reference
Manual, Version 2.26. http://mc-stan.org/

Textor, J., Zander, B. van der, Gilthorpe, M. S., Liskiewicz, M., & Ellison, G. T. (2017).
Robust causal inference using directed acyclic graphs: the R package “dagitty”. International
Journal of Epidemiology, 45(6), 1887-1894. https://doi.org/10.1093/ije/dyw341

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
ISBN: 978-3-319-24277-4

Fleischhacker, & Nguyen. (2022). Generative DAGs as an Interface Into Probabilistic Programming with the R Package causact. Journal of 8
Open Source Software, 7(76), 4415. https://doi.org/10.21105/joss.04415.

https://github.com/rich-iannone/DiagrammeR
https://github.com/rich-iannone/DiagrammeR
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.5281/zenodo.3879620
https://sites.google.com/site/doingbayesiandataanalysis/
https://doi.org/10.1023/A:1008929526011
https://github.com/rmcelreath/rethinking
https://github.com/rmcelreath/rethinking
https://doi.org/10.1201/9780429029608
http://mc-stan.org/
https://doi.org/10.1093/ije/dyw341
https://ggplot2.tidyverse.org
https://doi.org/10.21105/joss.04415

	Summary
	Statement of Need
	Modelling with Generative DAGs
	Comparison to Other Packages
	Conclusion
	Acknowledgements
	References

