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Summary
This manuscript describes the MIT-licensed Julia (Bezanson et al., 2017) package
SimilaritySearch.jl that provides algorithms to efficiently retrieve k nearest neighbors from
a metric dataset and other related problems with no knowledge of the underlying algorithms,
since our main structure, the SearchGraph, has autotuning capabilities. The package is
designed to work in main memory and takes advantage of multithreading systems in most of
its primary operations.

Statement of need
Similarity search algorithms are fundamental tools for many computer science and data analysis
methods. For instance, they are among the underlying machinery behind efficient information
retrieval systems (Luan et al., 2021; Witten et al., 1999), and they allow fast clustering analysis
on large datasets (Jayaram Subramanya et al., 2019; Weng et al., 2021; Yu et al., 2020).
Another example is how they can speed up the construction of all k nearest neighbor graphs,
which are the input of non-linear dimensional reduction methods that are popularly used to
visualize complex data (Amid & Warmuth, 2019; Lee & Verleysen, 2007; McInnes et al., 2018;
Van der Maaten & Hinton, 2008). The number of potential applications is also increasing as
the number of problems solved by deep learning methods proliferates, i.e., many deep learning
internal representations are direct input for similarity search.

The k nearest neighbor problem
Given a metric dataset, S ⊆ U and a metric distance function d, defined for any pair of
elements in U , the k nearest neighbor search of q consists of finding the subset R that
minimize

∑
u∈R d(q, u) for all possible subsets of size k, i.e., R ⊂ S and |R| = k. The problem

can be solved easily with an exhaustive evaluation, but this solution is impractical when the
number of expected queries is large or for high-dimensional datasets. When the dataset can
be preprocessed, it is possible to overcome these difficulties by creating an index, i.e., a data
structure to solve similarity queries efficiently. Depending on the dimensionality and size of
the dataset, it could be necessary to trade speed for quality,1 traditional methods leave this
optimization to the user. Our approach has automated functions that simplify this task.

Our SearchGraph is based on the Navigable Small World (NSW) graph index (Y. A. Malkov
& Yashunin, 2018) using a different search algorithm based on the well-known beam search
meta-heuristic, smaller node degrees based on Spatial Access Trees (Navarro, 2002), and

1The quality is often measured as the recall, which is as a proportion of how many relevant results were
found in a search; our package contains a function macrorecall that computes the average of this score for a
set of query results.

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

1

https://orcid.org/0000-0001-5804-9868
https://orcid.org/0000-0001-7422-7011
https://doi.org/10.21105/joss.04442
https://github.com/openjournals/joss-reviews/issues/4442
https://github.com/sadit/SimilaritySearch.jl
https://doi.org/10.5281/zenodo.6779410
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/kose-y
https://github.com/ahwillia
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04442


autotuned capabilities. The details are provided in (Ruiz et al., 2015; Tellez et al., 2021; Tellez
& Ruiz, 2022).

Alternatives
Y. Malkov et al. (2014) add a hierarchical structure to the NSW to create the Hierarchical
NSW (HNSW) search structure. This index is a central component of the hnswlib and the
nmslib libraries. Along with the HNSW, the faiss library also provides a broad set of efficient
implementations of metric, hashing, and product quantization indexes. Dong et al. (2011)
introduce the NN Descent method, which uses the graph of neighbors as index structure;
it is the machinery behind PyNNDescent, which is behind the fast computation of UMAP
non-linear low dimensional projection.2 Guo et al. (2020) introduce the SCANN index for
inner product-based metrics and Euclidean distance, available at the SCANN repository based
on hashing.

Currently, there are some packages dedicated to nearest neighbor search, for instance,
NearestNeighbors.jl, Rayuela.jl, HNSW.jl, and a wrapper for the FAISS library, Faiss.jl,
among other efforts.

Main features of SimilaritySearch

The SearchGraph struct is an approximate method designed to trade effectively between speed
and quality. It has an integrated autotuning feature that almost free the users of any setup
and manual model selection. In a single pass, the incremental construction adjusts the index
parameters to achieve the desired performance, optimizing both search speed and quality or a
minimum quality. This search structure is described in Tellez & Ruiz (2022), which uses the
SimilaritySearch.jl package as implementation (0.9 version series). Previous versions of
the package are benchmarked in Tellez et al. (2021).

The main set of functions are:

• search: Solves a single query.
• searchbatch: Solves a set of queries.
• allknn: Computes the k nearest neighbors for all elements in an index.
• closestpair: Computes the closest pair in a metric dataset.
• neardup: Removes near-duplicates from a metric dataset.

Note that our implementations produce complete results with exact indexes and will produce
approximate results when approximate indexes are used.

SimilaritySearch.jl can be used with any semi-metric, as defined in the package
Distances.jl. Note that a number of distance functions for vectors, strings, and sets are also
available in our package.

The complete set of functions and structures are detailed in the documentation.3

Installation
The package is available in the Julia’s integrated package manager:

using Pkg

Pkg.add(”SimilaritySearch”)

2https://github.com/lmcinnes/umap.
3https://sadit.github.io/SimilaritySearch.jl/
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A brief example and a comparison with alternatives
As an example, we used the set of 70k hand-written digits MNIST dataset (LeCun et al.,
1998) (using the traditional partition scheme of 60k objects for indexing and 10k as queries).
We use the MLDatasets.jl package for this matter (v0.6); each 28x28 image is loaded as a
784-dimensional vector using 32-bit floating-point numbers. We select the squared Euclidean
distance as the metric.

1 using SimilaritySearch, MLDatasets

2

3 function load_data()

4 train, test = MNIST(split = :train), MNIST(split = :test)

5 (w, h, n), m = size(train.features), size(test.features, 3)

6 db = MatrixDatabase(reshape(train.features, w * h, n))

7 queries = MatrixDatabase(reshape(test.features, w * h, m))

8 db, queries

9 end

10

11 function example(k, dist = SqL2Distance())

12 db, queries = load_data()

13 G = SearchGraph(; dist, db)

14 index!(G; parallel_block = 512)

15 id, dist = searchbatch(G, queries, k)

16 point1, point2, mindist = closestpair(G)

17 idAll, distAll = allknn(G, k)

18 end

19

20 example(32)

The function example loads the data (line 12), creates the index (line 14), and then finds all k
nearest neighbors of the test in the indexed partition as a batch of queries (line 15). The same
index is used to compute the closest pair of points in the train partition (line 16) and compute
all k nearest neighbors on the train partition (line 17) for k = 32.

For this, we used an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz workstation with 256
GiB RAM using GNU/Linux CentOS 8. Our system has 32 cores (64 threads), and we use
all threads in all tested systems. For instance, we used SimilaritySearch.jl v0.9.3 and
Julia 1.7.2. Table 1 compares the running times of SearchGraph (SG). We consider different
autotuned versions calling optimize!(G, MinRecall(r)) after the index! function call, for
different expected recall scores, it defaults to ParetoRecall. We also compare with a parallel
brute-force algorithm (replacing lines 13-14 with ExhaustiveSearch(; dist, db)).

Table 1: Performance comparison of running several similarity methods on the MNIST dataset.
Smaller time costs and memory are desirable while high recall scores (close to 1) are better.

method build opt. searchbatch closestpair allknn mem. allknn

cost (s) cost (s) cost (s) cost (s) cost (s) (MB) recall
ExhaustiveSearch 0.0 0.0 3.56 22.18 21.65 179.44 1.00
SG ParetoRecall 0.91 0.0 0.10 0.29 0.41 182.22 0.78

SG MinRecall(0.6) ” 0.10 0.04 0.11 0.19 ” 0.66
SG MinRecall(0.9) ” 0.12 0.13 0.46 0.61 ” 0.86
SG MinRecall(0.95) ” 0.23 0.15 0.55 0.75 ” 0.93

SCANN 25.11 - - - 2.14 201.95 1.00
HNSW (FAISS) 1.91 - - - 1.99 195.02 0.99
PyNNDescent 45.09 - - - 9.94 430.42 0.99
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Comparison with alternatives
We also indexed and searched for all k nearest neighbors using the default values for the
HNSW, PyNNDescent, and SCANN nearest neighbor search indexes. All these operations were
computed using all available threads. Note that high recall scores indicate that the default
parameters can be adjusted to improve search times; nonetheless, optimizing parameters
also imply using a model selection procedure that requires more computational resources
and knowledge about the packages and methods. Our SearchGraph (SG) method performs
this procedure in a single pass and without extra effort by the user. Note that we run
several optimizations that use the same index and spend a small amount of time effectively
trading between quality and speed; this also works for larger and high-dimensional datasets as
benchmarked in Tellez & Ruiz (2022). Finally, short-lived tasks like computing all k nearest
neighbors for non-linear dimensional reductions (e.g., data visualization) also require low build
costs; therefore, a complete model selection is prohibitive, especially for large datasets.

Final notes
SimilaritySearch.jl provides a metric-agnostic alternative for similarity search in high-
dimensional datasets. Additionally, our autotuning feature is a milestone in the nearest
neighbor community since it makes the technology more accessible for users without profound
knowledge in the field. More examples and notebooks (Pluto and Jupyter) are available in the
sibling repository https://github.com/sadit/SimilaritySearchDemos.
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