
SimilaritySearch.jl: Autotuned nearest neighbor
indexes for Julia
Eric S. Tellez 1,2 and Guillermo Ruiz 1,3

1 Consejo Nacional de Ciencia y Tecnología, México. 2 INFOTEC Centro de Investigación e
Innovación en Tecnologías de la Información y Comunicación, México. 3 CentroGEO Centro de
Investigación en Ciencias de Información Geoespacial, México.

DOI: 10.21105/joss.04442

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @kose-y
• @ahwillia

Submitted: 23 May 2022
Published: 05 July 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
This manuscript describes the MIT-licensed Julia (Bezanson et al., 2017) package
SimilaritySearch.jl that provides algorithms to efficiently retrieve k nearest neighbors from
a metric dataset and other related problems with no knowledge of the underlying algorithms,
since our main structure, the SearchGraph, has autotuning capabilities. The package is
designed to work in main memory and takes advantage of multithreading systems in most of
its primary operations.

Statement of need
Similarity search algorithms are fundamental tools for many computer science and data analysis
methods. For instance, they are among the underlying machinery behind efficient information
retrieval systems (Luan et al., 2021; Witten et al., 1999), and they allow fast clustering analysis
on large datasets (Jayaram Subramanya et al., 2019; Weng et al., 2021; Yu et al., 2020).
Another example is how they can speed up the construction of all k nearest neighbor graphs,
which are the input of non-linear dimensional reduction methods that are popularly used to
visualize complex data (Amid & Warmuth, 2019; Lee & Verleysen, 2007; McInnes et al., 2018;
Van der Maaten & Hinton, 2008). The number of potential applications is also increasing as
the number of problems solved by deep learning methods proliferates, i.e., many deep learning
internal representations are direct input for similarity search.

The k nearest neighbor problem
Given a metric dataset, S ⊆ U and a metric distance function d, defined for any pair of
elements in U , the k nearest neighbor search of q consists of finding the subset R that
minimize

∑
u∈R d(q, u) for all possible subsets of size k, i.e., R ⊂ S and |R| = k. The problem

can be solved easily with an exhaustive evaluation, but this solution is impractical when the
number of expected queries is large or for high-dimensional datasets. When the dataset can
be preprocessed, it is possible to overcome these difficulties by creating an index, i.e., a data
structure to solve similarity queries efficiently. Depending on the dimensionality and size of
the dataset, it could be necessary to trade speed for quality,1 traditional methods leave this
optimization to the user. Our approach has automated functions that simplify this task.

Our SearchGraph is based on the Navigable Small World (NSW) graph index (Y. A. Malkov
& Yashunin, 2018) using a different search algorithm based on the well-known beam search
meta-heuristic, smaller node degrees based on Spatial Access Trees (Navarro, 2002), and

1The quality is often measured as the recall, which is as a proportion of how many relevant results were
found in a search; our package contains a function macrorecall that computes the average of this score for a
set of query results.

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

1

https://orcid.org/0000-0001-5804-9868
https://orcid.org/0000-0001-7422-7011
https://doi.org/10.21105/joss.04442
https://github.com/openjournals/joss-reviews/issues/4442
https://github.com/sadit/SimilaritySearch.jl
https://doi.org/10.5281/zenodo.6779410
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/kose-y
https://github.com/ahwillia
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04442

autotuned capabilities. The details are provided in (Ruiz et al., 2015; Tellez et al., 2021; Tellez
& Ruiz, 2022).

Alternatives
Y. Malkov et al. (2014) add a hierarchical structure to the NSW to create the Hierarchical
NSW (HNSW) search structure. This index is a central component of the hnswlib and the
nmslib libraries. Along with the HNSW, the faiss library also provides a broad set of efficient
implementations of metric, hashing, and product quantization indexes. Dong et al. (2011)
introduce the NN Descent method, which uses the graph of neighbors as index structure;
it is the machinery behind PyNNDescent, which is behind the fast computation of UMAP
non-linear low dimensional projection.2 Guo et al. (2020) introduce the SCANN index for
inner product-based metrics and Euclidean distance, available at the SCANN repository based
on hashing.

Currently, there are some packages dedicated to nearest neighbor search, for instance,
NearestNeighbors.jl, Rayuela.jl, HNSW.jl, and a wrapper for the FAISS library, Faiss.jl,
among other efforts.

Main features of SimilaritySearch

The SearchGraph struct is an approximate method designed to trade effectively between speed
and quality. It has an integrated autotuning feature that almost free the users of any setup
and manual model selection. In a single pass, the incremental construction adjusts the index
parameters to achieve the desired performance, optimizing both search speed and quality or a
minimum quality. This search structure is described in Tellez & Ruiz (2022), which uses the
SimilaritySearch.jl package as implementation (0.9 version series). Previous versions of
the package are benchmarked in Tellez et al. (2021).

The main set of functions are:

• search: Solves a single query.
• searchbatch: Solves a set of queries.
• allknn: Computes the k nearest neighbors for all elements in an index.
• closestpair: Computes the closest pair in a metric dataset.
• neardup: Removes near-duplicates from a metric dataset.

Note that our implementations produce complete results with exact indexes and will produce
approximate results when approximate indexes are used.

SimilaritySearch.jl can be used with any semi-metric, as defined in the package
Distances.jl. Note that a number of distance functions for vectors, strings, and sets are also
available in our package.

The complete set of functions and structures are detailed in the documentation.3

Installation
The package is available in the Julia’s integrated package manager:

using Pkg

Pkg.add(”SimilaritySearch”)

2https://github.com/lmcinnes/umap.
3https://sadit.github.io/SimilaritySearch.jl/

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

2

https://github.com/nmslib/hnswlib
https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss
https://github.com/lmcinnes/pynndescent
https://github.com/google-research/google-research/tree/master/scann
https://github.com/KristofferC/NearestNeighbors.jl
https://github.com/una-dinosauria/Rayuela.jl
https://github.com/JuliaNeighbors/HNSW.jl
https://github.com/zsz00/Faiss.jl
https://github.com/JuliaStats/Distances.jl
https://github.com/lmcinnes/umap
https://sadit.github.io/SimilaritySearch.jl/
https://doi.org/10.21105/joss.04442

A brief example and a comparison with alternatives
As an example, we used the set of 70k hand-written digits MNIST dataset (LeCun et al.,
1998) (using the traditional partition scheme of 60k objects for indexing and 10k as queries).
We use the MLDatasets.jl package for this matter (v0.6); each 28x28 image is loaded as a
784-dimensional vector using 32-bit floating-point numbers. We select the squared Euclidean
distance as the metric.

1 using SimilaritySearch, MLDatasets

2

3 function load_data()

4 train, test = MNIST(split = :train), MNIST(split = :test)

5 (w, h, n), m = size(train.features), size(test.features, 3)

6 db = MatrixDatabase(reshape(train.features, w * h, n))

7 queries = MatrixDatabase(reshape(test.features, w * h, m))

8 db, queries

9 end

10

11 function example(k, dist = SqL2Distance())

12 db, queries = load_data()

13 G = SearchGraph(; dist, db)

14 index!(G; parallel_block = 512)

15 id, dist = searchbatch(G, queries, k)

16 point1, point2, mindist = closestpair(G)

17 idAll, distAll = allknn(G, k)

18 end

19

20 example(32)

The function example loads the data (line 12), creates the index (line 14), and then finds all k
nearest neighbors of the test in the indexed partition as a batch of queries (line 15). The same
index is used to compute the closest pair of points in the train partition (line 16) and compute
all k nearest neighbors on the train partition (line 17) for k = 32.

For this, we used an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz workstation with 256
GiB RAM using GNU/Linux CentOS 8. Our system has 32 cores (64 threads), and we use
all threads in all tested systems. For instance, we used SimilaritySearch.jl v0.9.3 and
Julia 1.7.2. Table 1 compares the running times of SearchGraph (SG). We consider different
autotuned versions calling optimize!(G, MinRecall(r)) after the index! function call, for
different expected recall scores, it defaults to ParetoRecall. We also compare with a parallel
brute-force algorithm (replacing lines 13-14 with ExhaustiveSearch(; dist, db)).

Table 1: Performance comparison of running several similarity methods on the MNIST dataset.
Smaller time costs and memory are desirable while high recall scores (close to 1) are better.

method build opt. searchbatch closestpair allknn mem. allknn

cost (s) cost (s) cost (s) cost (s) cost (s) (MB) recall
ExhaustiveSearch 0.0 0.0 3.56 22.18 21.65 179.44 1.00
SG ParetoRecall 0.91 0.0 0.10 0.29 0.41 182.22 0.78

SG MinRecall(0.6) ” 0.10 0.04 0.11 0.19 ” 0.66
SG MinRecall(0.9) ” 0.12 0.13 0.46 0.61 ” 0.86
SG MinRecall(0.95) ” 0.23 0.15 0.55 0.75 ” 0.93

SCANN 25.11 - - - 2.14 201.95 1.00
HNSW (FAISS) 1.91 - - - 1.99 195.02 0.99
PyNNDescent 45.09 - - - 9.94 430.42 0.99

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

3

https://github.com/JuliaML/MLDatasets.jl
https://doi.org/10.21105/joss.04442

Comparison with alternatives
We also indexed and searched for all k nearest neighbors using the default values for the
HNSW, PyNNDescent, and SCANN nearest neighbor search indexes. All these operations were
computed using all available threads. Note that high recall scores indicate that the default
parameters can be adjusted to improve search times; nonetheless, optimizing parameters
also imply using a model selection procedure that requires more computational resources
and knowledge about the packages and methods. Our SearchGraph (SG) method performs
this procedure in a single pass and without extra effort by the user. Note that we run
several optimizations that use the same index and spend a small amount of time effectively
trading between quality and speed; this also works for larger and high-dimensional datasets as
benchmarked in Tellez & Ruiz (2022). Finally, short-lived tasks like computing all k nearest
neighbors for non-linear dimensional reductions (e.g., data visualization) also require low build
costs; therefore, a complete model selection is prohibitive, especially for large datasets.

Final notes
SimilaritySearch.jl provides a metric-agnostic alternative for similarity search in high-
dimensional datasets. Additionally, our autotuning feature is a milestone in the nearest
neighbor community since it makes the technology more accessible for users without profound
knowledge in the field. More examples and notebooks (Pluto and Jupyter) are available in the
sibling repository https://github.com/sadit/SimilaritySearchDemos.

Acknowledgements
The authors would like to thank the reviewers and the editor for their valuable time; their sugges-
tions improved the quality of this manuscript. This research used the computing infrastructure
of the Laboratorio de GeoInteligencia Territorial at CentroGEO Centro de Investigación en
Ciencias de Información Geoespacial, Aguascalientes, México.

References
Amid, E., & Warmuth, M. K. (2019). TriMap: Large-scale dimensionality reduction using

triplets. CoRR, abs/1910.00204. http://arxiv.org/abs/1910.00204

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph construction for
generic similarity measures. Proceedings of the 20th International Conference on World
Wide Web, 577–586. https://doi.org/10.1145/1963405.1963487

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., & Kumar, S. (2020).
Accelerating large-scale inference with anisotropic vector quantization. 37th Inter-
national Conference on Machine Learning, ICML 2020, PartF168147-5, 3845–3854.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105244400&partnerID=40&
md5=e3ab797435367141112b5e5843b2cb1e

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Krishnawamy, R., & Kadekodi, R.
(2019). Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.
1109/5.726791

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

4

https://github.com/sadit/SimilaritySearchDemos
http://arxiv.org/abs/1910.00204
https://doi.org/10.1137/141000671
https://doi.org/10.1145/1963405.1963487
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105244400&partnerID=40&md5=e3ab797435367141112b5e5843b2cb1e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105244400&partnerID=40&md5=e3ab797435367141112b5e5843b2cb1e
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.21105/joss.04442

Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction (Vol. 1). Springer.

Luan, Y., Eisenstein, J., Toutanova, K., & Collins, M. (2021). Sparse, Dense, and Attentional
Representations for Text Retrieval. Transactions of the Association for Computational
Linguistics, 9, 329–345. https://doi.org/10.1162/tacl_a_00369

Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4), 824–836. https://doi.org/10.1109/tpami.2018.
2889473

Malkov, Y., Ponomarenko, A., Logvinov, A., & Krylov, V. (2014). Approximate nearest
neighbor algorithm based on navigable small world graphs. Information Systems, 45, 61–68.
https://doi.org/10.1016/j.is.2013.10.006

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and
projection for dimension reduction. arXiv. https://doi.org/10.48550/ARXIV.1802.03426

Navarro, G. (2002). Searching in metric spaces by spatial approximation. The VLDB Journal,
11(1), 28–46. https://doi.org/10.1007/s007780200060

Ruiz, G., Chávez, E., Graff, M., & Téllez, E. S. (2015). Finding near neighbors through
local search. International Conference on Similarity Search and Applications, 103–109.
https://doi.org/10.1007/978-3-319-25087-8_10

Tellez, E. S., & Ruiz, G. (2022). Similarity search on neighbor’s graphs with automatic pareto
optimal performance and minimum expected quality setups based on hyperparameter op-
timization. arXiv. https://doi.org/10.48550/ARXIV.2201.07917

Tellez, E. S., Ruiz, G., Chavez, E., & Graff, M. (2021). A scalable solution to the nearest
neighbor search problem through local-search methods on neighbor graphs. Pattern Analysis
and Applications, 24(2), 763–777. https://doi.org/10.1007/s10044-020-00946-w

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11).

Weng, S., Gou, J., & Fan, Z. (2021). h-DBSCAN: A simple fast DBSCAN algorithm for
big data. In V. N. Balasubramanian & I. Tsang (Eds.), Proceedings of the 13th asian
conference on machine learning (Vol. 157, pp. 81–96). PMLR. https://proceedings.mlr.
press/v157/weng21a.html

Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: Compressing and
indexing documents and images. Morgan Kaufmann.

Yu, Q., Chen, K.-H., & Chen, J.-J. (2020). Using a set of triangle inequalities to accelerate k-
means clustering. International Conference on Similarity Search and Applications, 297–311.
https://doi.org/10.1007/978-3-030-60936-8_23

Tellez, & Ruiz. (2022). SimilaritySearch.jl: Autotuned nearest neighbor indexes for Julia. Journal of Open Source Software, 7(75), 4442.
https://doi.org/10.21105/joss.04442.

5

https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.1007/s007780200060
https://doi.org/10.1007/978-3-319-25087-8_10
https://doi.org/10.48550/ARXIV.2201.07917
https://doi.org/10.1007/s10044-020-00946-w
https://proceedings.mlr.press/v157/weng21a.html
https://proceedings.mlr.press/v157/weng21a.html
https://doi.org/10.1007/978-3-030-60936-8_23
https://doi.org/10.21105/joss.04442

	Summary
	Statement of need
	The k nearest neighbor problem
	Alternatives

	Main features of SimilaritySearch
	Installation
	A brief example and a comparison with alternatives
	Comparison with alternatives

	Final notes
	Acknowledgements
	References

