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Summary
Recent technological progress in high-contrast imaging has allowed the spectral characterization
of directly imaged giant planet and brown dwarf companions at ever shorter angular separation
from their host stars, hence opening a new avenue to study their formation, evolution, and
composition. In this context, special is a Python package that was developed to provide the
tools to analyse the low- to medium-resolution optical/IR spectra of these directly imaged
low-mass companions.

Statement of need
special provides a number of tools for the analysis of spectra from any (sub)stellar object,
regardless of the observational method used to obtain the spectra (direct imaging or not)
and the format of the spectra (multi-band photometry, low-resolution or medium-resolution
spectrum, or a combination thereof). Although implemented with the characterization of
directly imaged substellar companions in mind, the main routines in special (e.g. Bayesian
retrieval of model parameters though MCMC or nested samplers, or best-fit template search)
can also be applied to the spectrum of any type of object, provided a relevant grid of models
or library of templates for the fit.

special shares similar basic utilities as offered in splat (Burgasser & Splat Development
Team, 2017), such as dereddening, spectral indices calculation, model grid fitting through
MCMC and template fitting. However, a number of features are currently unique to special,
such as (i) Bayesian inference through nested samplers; (ii) inclusion of non-grid parameters for
model fits (e.g. extinction, extra blackbody components, specific emission lines); (iii) inclusion
of relative extinction and flux scaling, and handling of spectral coverage mismatches when
searching for the best-fit template in a library; (iv) empirical estimation of spectral correlation
between channels of an integral field spectrograph, which is relevant to the directly imaged
companions for which uncertainties in the spectrum capture correlated residual speckle noise
(Greco & Brandt, 2016); and (v) compatibility of all special fitting routines with combined
spectra (i.e. obtained with multiple instruments with potentially different resolving powers or
photometric filters).

The main available features of the package are listed below:

• calculation of the spectral correlation between channels of an integral field spectrograph
(IFS) datacube (Delorme et al., 2017; Greco & Brandt, 2016);

• calculation of empirical spectral indices for MLT-dwarfs (Allers et al., 2007; Gorlova et
al., 2003; Slesnick et al., 2004), enabling their classification;
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• fitting of input spectra to either photo-/atmospheric model grids or a blackbody model,
including additional parameters such as (extra) black body component(s), extinction,
total-to-selective extinction ratio or specific emission lines.

• estimating most likely model parameters in a Bayesian framework, using either MCMC
(Goodman & Weare, 2010) or nested (Buchner, 2021a; Feroz et al., 2009; Mukherjee et
al., 2006; Skilling, 2004) samplers to infer their posterior distributions;

• searching for the best-fit template spectrum within a given template library, with up to
two free parameters (flux scaling and relative extinction).

The MCMC sampler relies on emcee (Foreman-Mackey et al., 2013, 2019), while two options
are available for nested sampling: nestle (Barbary, 2013) and ultranest (Buchner, 2021b).
The samplers have been adapted for flexibility - they are usable on any grid of input models
provided by the user, simply requiring a snippet function specifying the format of the input.
Moreover they can sample the effect of blackbody component(s) (either as a separate model or
as extra components to an atmospheric model), extinction, and different extinction laws than
ISM. The samplers can accept either uniform or Gaussian priors for each model parameter.
In the case of the MCMC sampler, a prior on the mass of the object can also be provided
if surface gravity is one of the model parameters. The code also considers convolution and
resampling of model spectra to match the observed spectrum. Either spectral resolution or
photometric filter transmission (or combinations thereof for compound input spectra) can be
provided as input to the algorithm, for appropriate convolution/resampling of different parts of
the model spectrum. The adopted log-likelihood expression can include i) spectral covariance
between measurements of adjacent channels of a given instrument, and ii) additional weights
that are proportional to the relative spectral bandwidth of each measurement, in case these
are obtained from different instruments (e.g. photometry+spectroscopy):

logℒ(𝐷|𝑀) = −1
2
[W ⊙ (Fobs − Fmod)]

𝑇C−1[W ⊙ (Fobs − Fmod)] (1)

where 𝐷 are the data at hand (measured fluxes and spectral covariance), 𝑀 is the considered
model, Fobs and Fmod are the fluxes of the observed and model spectra respectively (both
are vectors of length 𝑛𝑧, the number of spectro-/photometric points), C is the spectral
covariance matrix (𝑛𝑧 x 𝑛𝑧), ⊙ stands for the Hadamard product, and W is the vector of
weights 𝑤𝑖 ∝ Δ𝜆𝑖/𝜆𝑖 (length 𝑛𝑧), with Δ𝜆𝑖 the width of spectral channels (for integral field
spectrograph points) or the FWHM of photometric filters.

A Jupyter notebook tutorial illustrates most available features in special through their
application for the analysis of the composite spectrum of CrA-9 B/b (Christiaens et al., 2021).
It is available on GitHub, Binder and the documentation of special.
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