
CiteLang: Modeling the Research Software Ecosystem
Vanessa Sochat 1

1 Lawrence Livermore National Laboratory, Livermore, CA, USA
DOI: 10.21105/joss.04458

Software
• Review
• Repository
• Archive

Editor: Fabian-Robert Stöter
Reviewers:

• @gflofst
• @rmmilewi

Submitted: 26 April 2022
Published: 05 September 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Understanding attribution of software is essential for understanding the research software
ecosystem and evaluating the utility or value of any particular library. While substantial work
has been done to discuss research software citation (Smith et al., 2016), there is not follow up
work to provide libraries or methods to model this ecosystem for easier study, despite the need
(Glass et al., 2002; Goble, 2014). CiteLang is the first tool to afford this type of study, offering
automated analysis and data extraction for open source software repositories, generation of
summary analysis and graphs for single packages or groups of software, and maintaining a
local database to store cached data. Using CiteLang it is possible to calculate different views
of open source contributions for a repository (Sochat, 2022b), or to do analyses that describe
an entire ecosystem of software (Sochat, 2022c). This tool should be of interest to research
groups interested in studying research software engineering (Rosado de Souza et al., 2019) or
the software ecosystem (Cohen et al., 2021; Glass et al., 2002).

Statement of Need
Research software engineering (Baxter et al., 2012) is becoming a more established profession,
providing best practices for software in research (Cohen et al., 2021) and fueling an entire
economy of new jobs for research software engineers (RSEng). As this role has grown out of
academia, the accepted practice of publication to derive value of an individual has followed
tradition from academia, meaning that RSEng have not only the burden to write software, but
to publish papers to prove their value. While writing a software paper may be appropriate for
cases that warrant getting the attention of an academic community, writing papers should not
be the primary way that RSEng are valued. While discussion of research software citation is
not uncommon (Smith et al., 2016), what is uncommon is derivation of libraries and modeling
software that can make it easy to study the ecosystem and propose new paradigms. Work
in this area tends to focus on generating single citations and metadata for a specific project
(Druskat, 2019; Jones et al., 2017), to require manual derivation of details and discussion
(Katz & Smith, 2015), or to make the assumption that the end goal or best idea is to still
fit research software into the traditional academic citation system (Group, 2022; Katz et al.,
2019). Undeniably, efforts to capture more metadata around a software project are important,
but they typically require extra work on the part of the researcher, and do not address the
larger question of rethinking valuation of research software engineers. Notably, most of these
papers that discuss software citation provide theoretical examples. There is a gap in work to
provide software to better model the ecosystem, and a community initiative to think about
ideas that go beyond a traditional citation.

Software for Modeling the Software Ecosystem

CiteLang grew from this need, and is the first library of its kind that aims to empower researchers
to better study the ecosystem by way of providing methods and graph-based modeling of a
single project or larger ecosystem. A research group using Citelang can easily derive:

Sochat. (2022). CiteLang: Modeling the Research Software Ecosystem. Journal of Open Source Software, 7(77), 4458. https://doi.org/10.21105/
joss.04458.

1

https://orcid.org/0000-0002-4387-3819
https://doi.org/10.21105/joss.04458
https://github.com/openjournals/joss-reviews/issues/4458
https://github.com/vsoch/citelang
https://doi.org/https://doi.org/10.5281/zenodo.7048920
https://faroit.com/
https://orcid.org/0000-0002-2534-1165
https://github.com/gflofst
https://github.com/rmmilewi
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04458
https://doi.org/10.21105/joss.04458


• How software depends on other software
• How software dependencies change over time
• How the value of a particular software library changes

And can customize an analysis to choose everything from how to distribute credit between
software and dependencies, to setting a minimum credit value to stop parsing, or even to
stop parsing after a particular level of dependency is traversed. CiteLang works by way of
taking advantage of package manager APIs (when available) to automatically discover software
metadata and dependencies, and generates a cache for saving all data and for re-use. A list of
supported package managers in provided in Table 1.

Name Project Count Homepage
Default
Language

Alcatraz 464 http://alcatraz.io Objective-C
Bower 69517 http://bower.io CSS
Cargo 81429 https://crates.io Rust
Carthage 4515 https://github.com/Carthage/Cartha… Swift
Clojars 24291 https://clojars.org Clojure
Cocoapods 87311 http://cocoapods.org/ Objective-C
Conda 16297 https://anaconda.org
Cpan 39086 https://metacpan.org Perl
Cran 22051 https://cran.r-project.org/ R
Dub 2404 http://code.dlang.org D
Elm 2605 http://package.elm-lang.org/ Elm
Github https://github.com
Go 365289 https://pkg.go.dev
Hackage 16460 http://hackage.haskell.org
Haxelib 1703 https://lib.haxe.org Haxe
Hex 12946 https://hex.pm Elixir
Homebrew 7503 http://brew.sh/ C
Inqlude 228 https://inqlude.org/ C++
Julia 3048 http://pkg.julialang.org/ Julia
Maven 469374 http://maven.org Java
Meteor 13410 https://atmospherejs.com JavaScript
Nimble 1902 https://github.com/nim-lang/nimble Nim
Npm 2324490 https://www.npmjs.com JavaScript
Nuget 375186 https://www.nuget.org C#
Packagist 355691 https://packagist.org PHP
Pub 30141 https://pub.dartlang.org Dart
Puppet 6923 https://forge.puppet.com Puppet
Purescript 582 https://github.com/purescript/psc-… PureScript
Pypi 437955 https://pypi.org/ Python
Racket 2193 http://pkgs.racket-lang.org/
Rubygems 178224 https://rubygems.org Ruby
Spack 6375 https://spack.github.io/packages
Swiftpm 4207 https://developer.apple.com/swift/ Swift

Table 1 Package managers supported by CiteLang. A subset use their own APIs,
while others use libraries.io. The “GitHub” package manager looks at dependencies
parsed from the GitHub dependency graph.

Along with methods to derive data to model the ecosystem, CiteLang provides a suite of
command line tools to generate graphs that can be displayed in the terminal, and other formats
for popular graphing software (dot, Cypher for Neo4j, and Gexf for NetworkX). By default,
CiteLang will use a model that attributes 50% of credit to a main package, and then 50%

Sochat. (2022). CiteLang: Modeling the Research Software Ecosystem. Journal of Open Source Software, 7(77), 4458. https://doi.org/10.21105/
joss.04458.

2

https://libraries.io
https://docs.github.com/en/code-security/supply-chain-security%20understanding-your-software-supply-chain/about-the-dependency-graph
https://doi.org/10.21105/joss.04458
https://doi.org/10.21105/joss.04458


evenly distributed to all dependencies, and applied recursively up to a minimum credit limit
(e.g., 0.001) or to a specific level of parsing (e.g., three generations of dependencies). CiteLang
also provides a badge command for a repository to generate a sunburst badge (Figure 1).

Figure 1: Figure 1: A repository badge generated with CiteLang.

All of these actions can be accomplished from within Python, from the terminal with the
CiteLang client, or via an automated workflow and the GitHub actions (Sochat, 2022a) that
CiteLang provides. In summary, the software enables research to better understand our research
software ecosystem, and hopefully implement ideas to improve it.

Community Initiative

A large part of innovation is cultural. On a cultural level, CiteLang is the first tool of its kind
to suggest an alternative way to value software beyond the traditional academic practice of
publication. It suggests a model where RSEng are not required to generate separate DOIs
(digital object identifiers) associated with papers, or supplementary metadata files about the

Sochat. (2022). CiteLang: Modeling the Research Software Ecosystem. Journal of Open Source Software, 7(77), 4458. https://doi.org/10.21105/
joss.04458.

3

https://doi.org/10.21105/joss.04458
https://doi.org/10.21105/joss.04458


software. This model uses already established ways to publish and distribute software, package
managers.

CiteLang is part of a larger vision that is needed for an initiative of tooling to empower research
groups to study software and imagine new paradims to supplement or replace citation. Beyond
citation, the software offers a set of tools to enable any kind of graph- or metadata- based
study of a software ecosystem. If researchers do not have analysis tools that make it easy
to model and understand the space, change will come slowly, if at all. If research software
engineers do not proactively develop and champion tools for this kind of study, it will be less
likely to happen, and we will choose decision through indecision – valuing research software
engineers based on a broken publication system – only because it’s the way we have always
done things, and nobody has been inspired or empowered to try anything different.

Conclusion
CiteLang makes it possible to better study the ecosystem of research software. It supports study,
visualization, and data extraction to enable more applied research around software citation. You
can read more about CiteLang at the GitHub repository (https://github.com/vsoch/citelang)
or the documentation user guide.

References
Baxter, R., Hong, N. C., Gorissen, D., Hetherington, J., & Todorov, I. (2012). The research

software engineer. Digital Research Conference, Oxford, 1–3.

Cohen, J., Katz, D. S., Barker, M., Chue Hong, N., Haines, R., & Jay, C. (2021). The
four pillars of research software engineering. IEEE Software, 38(1), 97–105. https:
//doi.org/10.1109/MS.2020.2973362

Druskat, S. (2019). The citation file format (CFF): Why, what, how?

Glass, R. L., Vessey, I., & Ramesh, V. (2002). Research in software engineering: An analysis
of the literature. Information and Software Technology, 44(8), 491–506. https://doi.org/
10.1016/S0950-5849(02)00049-6

Goble, C. (2014). Better software, better research. IEEE Internet Computing, 18(5), 4–8.
https://doi.org/10.1109/MIC.2014.88

Group, F. (2022). FORCE11 software citation implementation working group. https://github.
com/force11/force11-sciwg

Jones, M. B., Boettiger, C., Mayes, A. C., Slaughter, P., Gil, Y., Chue Hong, N., & Goble, C.
(2017). CodeMeta.

Katz, D. S., Bouquin, D., Hong, N. P. C., Hausman, J., Jones, C., Chivvis, D., Clark, T.,
Crosas, M., Druskat, S., Fenner, M., Gillespie, T., Gonzalez-Beltran, A., Gruenpeter,
M., Habermann, T., Haines, R., Harrison, M., Henneken, E., Hwang, L., Jones, M.
B., … Zhang, Q. (2019). Software citation implementation challenges. arXiv. https:
//doi.org/10.48550/ARXIV.1905.08674

Katz, D. S., & Smith, A. M. (2015). Transitive credit and JSON-LD. Journal of Open Research
Software, 3(1), 7. https://doi.org/10.5334/jors.by

Rosado de Souza, M., Haines, R., Vigo, M., & Jay, C. (2019). What makes research software
sustainable? An interview study with research software engineers. 2019 IEEE/ACM 12th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 135–138. https://doi.org/10.1109/CHASE.2019.00039

Smith, A. M., Katz, D. S., Niemeyer, K. E., & Group, F. S. C. W. (2016). Software citation
principles. PeerJ Computer Science, 2, e86. https://doi.org/10.7717/peerj-cs.86

Sochat. (2022). CiteLang: Modeling the Research Software Ecosystem. Journal of Open Source Software, 7(77), 4458. https://doi.org/10.21105/
joss.04458.

4

https://vsoch.github.io/citelang/getting_started/user-guide.html
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1016/S0950-5849(02)00049-6
https://doi.org/10.1016/S0950-5849(02)00049-6
https://doi.org/10.1109/MIC.2014.88
https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
https://doi.org/10.48550/ARXIV.1905.08674
https://doi.org/10.48550/ARXIV.1905.08674
https://doi.org/10.5334/jors.by
https://doi.org/10.1109/CHASE.2019.00039
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.21105/joss.04458
https://doi.org/10.21105/joss.04458


Sochat, V. (2022a). CiteLang GitHub actions. https://vsoch.github.io/citelang/getting_
started/user-guide.html#github-action

Sochat, V. (2022b). Open source contributions with CiteLang. https://vsoch.github.io/2022/
citelang-contrib/

Sochat, V. (2022c). The research software ecosystem. https://vsoch.github.io/2022/rsepedia/

Sochat. (2022). CiteLang: Modeling the Research Software Ecosystem. Journal of Open Source Software, 7(77), 4458. https://doi.org/10.21105/
joss.04458.

5

https://vsoch.github.io/citelang/getting_started/user-guide.html#github-action
https://vsoch.github.io/citelang/getting_started/user-guide.html#github-action
https://vsoch.github.io/2022/citelang-contrib/
https://vsoch.github.io/2022/citelang-contrib/
https://vsoch.github.io/2022/rsepedia/
https://doi.org/10.21105/joss.04458
https://doi.org/10.21105/joss.04458

	Summary
	Statement of Need
	Software for Modeling the Software Ecosystem
	Community Initiative

	Conclusion

	References

