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Introduction
Diatomic molecules are among the most useful systems to test new ideas in quantum chemistry:

• They highlight the present and ubiquitous problems of modern approximations (Cohen
et al., 2008).

• By defining two fragments with an atom each, diatomics are ideal to implement and
test quantum embedding methods (Chávez & Wasserman, 2020).

Most practical calculations use a finite basis set of fixed functional form to represent operators
and quantities like potentials, orbitals, and densities (Hill, 2013; Szabo & Ostlund, 2012). Such
approaches require analytic expressions for the matrix representation of various operators and
often exhibit poor basis set convergence. The basis set incompleteness error can be minimized
by increasing the number of basis functions used, but it cannot be entirely eliminated in
practice because of the lack of parameters (for instance, exponents, contraction coefficients,
etc.) for large basis sets. On the other hand, grid-based methods intrinsically allow for an
accurate representation of operators and permit the use of arbitrarily large basis sets (Andrade
et al., 2015). Nevertheless, the number of points required to achieve a significant accuracy can
quickly become unmanageable. pyCADMium presented in this work, uses a prolate spheroidal
(PS) grid to circumvent these issues for atoms and diatomic molecules.

Summary
In this work, we introduce pyCADMium, a Python module that uses a PS coordinate grid to
accurately perform computational chemistry calculations on systems with cylindrical symmetry.
The name is an acronym for Chemical Atoms in Diatomic Molecules. pyCADMium originated
in a proprietary programming language but has been rewritten from the ground up as an
open-source alternative. The code has been the main driving force behind the development of
“Partition Density Functional Theory,” (Chávez & Wasserman, 2020; Elliott et al., 2010; Jiang
et al., 2018; Nafziger et al., 2017) a method that uses quantum embedding to lower the cost
of a calculation and fixes problems inherent to density functional approximations (Cohen et al.,
2008).

The PS grid is a coordinate system formed by revolving an elliptic coordinate plane around
the line intersecting the two foci. These planes are formed by ellipses and hyperbolae that
share the same focus (Arfken & Weber, 1999). Atoms and diatomics are ideally suited for this
coordinate system given that each foci can be used to allocate an atom. Additionally, the PS
grid is denser around the foci in its cartesian representation, where we expect wave functions
of molecular systems to change rapidly (Ryabinkin et al., 2017).
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Functionality
Consider a PS grid with foci located at (−𝑎/2, 0) and (𝑎/2, 0), where 𝑎 represents the inter-
nuclear separation in a diatomic of interest. Place one (A) or two atoms (A, B) at each of
these foci and specify its charge, number of electrons, and number of atomic and/or molecular
orbitals. Continue by specifying the symmetry of orbitals to calculate.

Once the set of fragments and/or molecule is defined pyCADMium can perform:

1. Density functional theory (DFT) calculation. Choose a density functional approximation
up to the generalized gradient approximation (GGA) rung (Tao et al., 2003) from the
library of exchange correlation functionals, libxc (Marques et al., 2012), and perform a
self-consistent Kohn-Sham DFT calculation to find the energies, orbitals and density.

2. Density-to-Potential inversion. Given any density on the PS grid, perform a numerical
inversion (Shi et al., 2022) to find the multiplicative external potential that reproduces
the input density (Wu & Yang, 2003). This problem is ill-posed when the potential is
expressed on a basis-set, but it is well-posed when done on a grid (Jensen & Wasserman,
2018).

3. Partition-DFT. Given a molecule of interest, fragment its external potential and find the
set of densities associated with them. The sum of these densities, for most cases, will not
be equal to the density of the full system, but we want them to be. Perform a numerical
inversion to find the non-additive kinetic potential, that when added to the exact non-
additive external-hartree-exchange-correlation potential becomes the unique embedding
potential required for the sum of isolated fragments to reproduce the molecular density
as well as minimize the sum of fragment energies (Elliott et al., 2010).

Statement of Need
PS coordinates have proven to be accurate in calculations using atoms and diatomic molecules
(Becke, 1982). Despite these coordinates being used thoroughly in literature, the options for
freely-available modules that focus on embedding applications are almost non-existent. One
example worth mentioning is DARSEC (Makmal et al., 2009), a FORTRAN-based code that uses
the same prolate spheroidal methodology in the context of the optimized effective potential
equation. Their use of the coordinates and basic operators, such as derivatives and integration,
is analogous to our approach. A key difference is our use of libxc to obtain the functional
derivatives needed to obtain exchange-correlation potentials. Moreover, their codebase is not
openly available.

Our code was designed from the ground up with embedding calculations in mind. As described
in Nafziger & Wasserman (2014), it can be used to perform and quickly develop other
embedding calculations. Last but not least, a repository of Jupyter Notebooks is available on
GitHub that includes various examples of the functionalities available in the code.
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