
Ipyannotator: the infinitely hackable annotation
framework
Ítalo Epifânio1, Oleksandr Pysarenko1, and Immanuel Bayer1

1 Palaimon GmbH
DOI: 10.21105/joss.04480

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @csadorf
• @matthewfeickert

Submitted: 13 April 2022
Published: 24 August 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Annotation is a task that associates semantic tags to a digital representation (image, video,
text, and others). This process is important for supervised machine learning (ML) approaches,
since the model learns, and successively improves, from data examples in form of input-output
pairs.

The variety of digital representations makes it difficult to develop a tool that is flexible and
meets all requirements for machine learning applications in different projects. Ipyannotator
is an open-source tool that allows manual annotation in multiple data formats, enabling
researchers/users to explore, create, and improve their datasets without leaving their own
development environment, and empowering them to extend and customize the annotation
process.

Statement of need
Many breakthroughs in machine learning (ML) applications such as image classification, text
understanding, and recommender systems belong to the class of supervised machine learning.
These ML methods often require an extensive basis of annotated data from which the model
learns. The amount and quality of the annotated data is essential to generate a model that
yields accurate prediction (Wong et al., 2015).

The variety of annotation taks, data formats, and the respective visualization of data is enormous.
When dealing with multiple domains of supervised ML, the large variety of applications is
a challenging task, especially considering that the tooling is potentially not flexible enough,
which imposes limitations to the user.

Ipyannotator is a library developed to provide a solution to this problem. Ipyannotator can
be used to visualize, create, and improve datasets, providing a flexible solution that can be
extended and customized by the user within the Jupyter development environment.

Jupyter is one of the most popular tools for data science (Wang et al., 2019) and is currently
in used in more than 7850000 public repositories on GitHub (Parente, 2022). Ipyannotator is
a tool developed to be used with Jupyter Notebooks, allowing researchers and developers to
integrate the library into their ML projects quickly and easily. The solution, however, is not
limited to research and developement teams. Since the Ipyannotator runs also on a web server,
it can by used for annotation purposes by any user.

Lahtinen et al. (2021) developed an annotator as a browser plugin, Dutta & Zisserman (2019)
built an annotator as a program that runs on the browser, and Bernal et al. (2019) developed a
desktop application for domain-specific medical image annotation. These previous annotation
tools are restricted to fixed data types and a specific type of annotation. Ipyannotator was
designed to be executed in Jupyter notebooks and allows users to change its iterations on

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

1

https://doi.org/10.21105/joss.04480
https://github.com/openjournals/joss-reviews/issues/4480
https://github.com/palaimon/ipyannotator/
https://doi.org/10.5281/zenodo.7018311
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/csadorf
https://github.com/matthewfeickert
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480


runtime, allowing extensions and customization, creating an “infinitely hackable annotation
framework” 1.

Infinitely hackable annotation framework
Ipyannotator uses Python libraries, such as Ipywidgets (Widgets, 2022), Ipycanvas (Renou,
2022), and Ipyevents (Craig, 2022), that abstract the HTML and Javascript interactions,
allowing developers to design UI interactions and elements using Python. Python’s dynamic
nature allows users to modify classes or modules at runtime, and due to the libraries mentioned,
users can change the default behavior of Ipyannotator’s UI, hacking the library. Browser
interaction such as mouse moving and HTML elements such as dropdowns are some of the
examples that can be changed at runtime when using Ipyannotator.

Being integrated with Jupyter notebooks makes Ipyannotator usage easy to modify at different
abstraction levels. The data science team can change the library’s behavior while writing their
own scripts on a platform and programming language that they already know.

In addition to the ability to change Ipyannotator’s browser interaction using Python, the library
also provides a flexible API that enables adding custom annotators. With a custom pair of
input and output classes, the user can create and register a new annotator while reusing the
library resources.

A simple but flexible API to define annotation tasks
Ipyannotator provides a simple API (application programming interface), which is based on
three steps that describe general tasks in the data annotation process. These are denoted as
the explore, create, and improve phases.

These three steps in conjuction with domain-specific annotation types define the inputs and
outputs of the annotation process, providing a very flexible and extendable API to set up
annotation tasks.

The following code examples illustrate the main actions around which the Ipyannotator API is
built. Please keep in mind that Ipyannotator aims to be flexible enought that these generic
aspects can be extented to much complexer and domain-specific tasks and interfaces. An
exemplary application, a standard image classification task, is used in the following.

from pathlib import Path

from ipyannotator.base import Settings

from ipyannotator.annotator import Annotator

from ipyannotator.mltypes import InputImage, OutputImageLabel

input = InputImage(image_dir='images', image_width=200, image_height=200)

output = OutputImageLabel(label_dir='labels', label_width=30, label_height=30)

settings = Settings(project_path=Path('data'))

annotator = Annotator(input, output, settings)

Explore
The explore step provides the ability to visualize and navigate through images and datasets.
Figure 1 displays an example of an image classification task using one of Ipyannotator’s built-in
artificial demonstration datasets. The dataset consists of images showing simple shapes in

1“infinitely hackable” is one of the key design principles used. Even through using very thin Python wrappers,
e.g., Renou (2022) for the JavaScript Web Canvas API, ipyannotator still has to obey the finite limitations of
the Python language.

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

2

https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480


different colors. The annotation task is to assign to each image the color that is closest to the
provided labels.

Figure 1: Explore step for image classification task

Create
In the create step new annotation datasets can be created by the user. Figure 2 presents an
example of an image classfication task, allowing the user to manually select multiple options
and save the results in the dataset.

Figure 2: Create step for image classification task

Improve
The improve step enables the user to refine datasets and thereby improve the annotation
quality. Figure 3 displays the usage of improve, allowing users to iterate over every class and
identify incorrect results.

Inspecting large batches of pre-annotated data allows a user to very quickly improve the quality
of datasets that were generated by an insufficient ML model. It also allows a domain expert to
verify and improve the annotation work of less specialized annotators.

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

3

https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480


Figure 3: Improve step for image classification task

Key Design Decisions

Jupyter Notebook all the way down
Jupyter Notebooks are used by many researcher relaying on open source software to create
and document their work. Ipyannotator not only runs directly in Jupyter Notebooks but is also
developed as a collection of notebooks. This collection constitues a library, user documentation,
and executable tutorials. This workflow is enabled by the innovative fastai library (Fastai,
2022) that turns Jupyter Notebook into a literate programming environment.

For the development of the user interface (UI), the Ipywidget library (Widgets, 2022) was used
to build a graphical user interface (GUI) in Jupyter Notebook. Furthermore, the voila library
(Dashboards, 2022), which uses Jupyter Notebook as a web-app, was also incorporated in the
Ipyannotator project to create the GUI for an easy to access web application.

Architecture
Ipyannotator’s architecture consists of three main systems components that comprise the user
interface (UI), the server, and the data storage. These components are targeted at two different
user types. A non-code architecture, which is schematically illustrated in Figure 4, is included
for non-technical annotators. The setup for a wide range of technically experienced annotators,
schematically shown in Figure 5, targets users typically involved in research projects, e.g., data
scientists, domain experts, and software developers.

Figure 4: Non-technical user architecture

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

4

https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480


Figure 5: Technical user architecture

For the technical user, multiple tutorials are provided, demonstrating Ipyannotator’s utilization.
The tutorials make it easier for new users get started and adapt the notebooks to their tasks.
They also demonstrate the annotation workflow and different features.

Usage
Currently, Ipyannotator is used for supervised ML projects by the devloper Palaimon GmbH.
Multiple tutorials and use cases have been tested and published to improve and validate the
usage of Ipyannotator on other real world projects.

Acknowledgements
The authors acknowledge the financial support by the Federal Ministry for Digital and Transport
of Germany under the program mFUND for the project OS-VAT (project number 19F2160A).

References
Bernal, J., Histace, A., Masana, M., Angermann, Q., Sánchez-Montes, C., Rodrı́guez de

Miguel, C., Hammami, M., Garcı́a-Rodrı́guez, A., Córdova, H., Romain, O., & others.
(2019). GTCreator: A flexible annotation tool for image-based datasets. International
Journal of Computer Assisted Radiology and Surgery, 14(2), 191–201. https://doi.org/10.
1007/s11548-018-1864-x

Craig, M. (2022). Ipycanvas (Version 0.12.0) [Computer software]. https://github.com/
mwcraig/ipyevents

Dashboards, V. (2022). Voila (Version 0.3.4) [Computer software]. https://github.com/
voila-dashboards/voila

Dutta, A., & Zisserman, A. (2019). The VIA annotation software for images, audio and
video. Proceedings of the 27th ACM International Conference on Multimedia, 2276–2279.
https://doi.org/10.1145/3343031.3350535

Fastai. (2022). Nbdev (Version 1.2.4) [Computer software]. https://github.com/fastai/nbdev

Lahtinen, T., Turtiainen, H., & Costin, A. (2021). BRIMA: Low-overhead BRowser-only IMage
annotation tool (preprint). 2021 IEEE International Conference on Image Processing (ICIP),
2633–2637. https://doi.org/10.1109/icip42928.2021.9506683

Parente, P. (2022). Nbestimate. In GitHub repository. https://github.com/parente/
nbestimate; GitHub.

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

5

https://doi.org/10.1007/s11548-018-1864-x
https://doi.org/10.1007/s11548-018-1864-x
https://github.com/mwcraig/ipyevents
https://github.com/mwcraig/ipyevents
https://github.com/voila-dashboards/voila
https://github.com/voila-dashboards/voila
https://doi.org/10.1145/3343031.3350535
https://github.com/fastai/nbdev
https://doi.org/10.1109/icip42928.2021.9506683
https://github.com/parente/nbestimate
https://github.com/parente/nbestimate
https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480


Renou, M. (2022). Ipycanvas (Version 0.12.0) [Computer software]. https://github.com/
martinRenou/ipycanvas

Wang, A. Y., Mittal, A., Brooks, C., & Oney, S. (2019). How data scientists use computational
notebooks for real-time collaboration. Proc. ACM Hum.-Comput. Interact., 3(CSCW).
https://doi.org/10.1145/3359141

Widgets, J. (2022). Ipywidgets (Version 7.6.3) [Computer software]. https://github.com/
jupyter-widgets/ipywidgets

Wong, Y.-S., Chu, H.-K., & Mitra, N. J. (2015). SmartAnnotator an interactive tool for
annotating indoor RGBD images. Computer Graphics Forum, 34, 447–457. https://doi.
org/10.1111/cgf.12574

Epifânio et al. (2022). Ipyannotator: the infinitely hackable annotation framework. Journal of Open Source Software, 7(76), 4480. https:
//doi.org/10.21105/joss.04480.

6

https://github.com/martinRenou/ipycanvas
https://github.com/martinRenou/ipycanvas
https://doi.org/10.1145/3359141
https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets
https://doi.org/10.1111/cgf.12574
https://doi.org/10.1111/cgf.12574
https://doi.org/10.21105/joss.04480
https://doi.org/10.21105/joss.04480

	Summary
	Statement of need
	Infinitely hackable annotation framework
	A simple but flexible API to define annotation tasks
	Explore
	Create
	Improve

	Key Design Decisions
	Jupyter Notebook all the way down
	Architecture

	Usage
	Acknowledgements
	References

