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Summary
Scientists often want to compare many parameters. For example, scientists often run randomized
control trials to study the effects of many treatments, use observational data to compare
many geographic regions, and study how public policy will impact many subgroups of people.
multiple-inference implements many of the latest econometric and statistical tools for
making such comparisons, including inference after ranking, simultaneous confidence sets, and
Bayesian estimators. It uses a statsmodels-like API and provides template notebooks for ease
of use. In just a few clicks, researchers can upload a .csv file of conventional estimates (e.g.,
ordinary least squares or instrumental variables estimates) to a Jupyter binder and click “run”
to apply a suite of multiple inference tools to their data.

Statement of need
Researchers often want to compare multiple parameters. We designed this package to help
pracitioners quickly, easily, and accurately perform such comparisons.

For example, there is a recent trend in social science to run large-scale studies and randomized
control trials designed to test the effectiveness of many interventions (Cortese, 2019). Re-
searchers have used large-scale field studies to test the effectiveness of many text messages
reminding patients to get vaccinated (Banerjee et al., 2021; Milkman, Patel, et al., 2021;
Milkman et al., 2022), behavioral nudges encouraging 24 Hour Fitness customers to exercise
more often (Milkman, Gromet, et al., 2021), monetary and social incentives to exert effort
(DellaVigna & Pope, 2018), behavioral interventions to decrease implicit racial bias (Lai et al.,
2014), donation matching schemes to increase charitable giving (Karlan & List, 2007), and
job training programs to increase employment among refugees in Jordan (Caria et al., 2020).
Researchers also perform multiple comparisons using observational data. For example, econo-
mists often use observation data to compare many neighborhoods in terms of intergenerational
mobility (Chetty et al., 2014, 2018; Chetty & Hendren, 2018).

Researchers tend to ask the same set of questions when comparing many parameters.

1. Which parameters are significantly different from zero?
2. Which parameters are significantly better than the average (i.e., the average value across

all parameters)?
3. Which parameters are significantly different from which other parameters?
4. What is the ranking of each parameter?
5. Which parameters might be the largest (i.e., the highest-ranked)?
6. What are the values of the parameters given their rank? e.g., What is the value of the

parameter with the largest estimated value?
7. How are the parameters distributed?

Researchers often use conventional estimators like ordinary least squares (OLS) and instrumental
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variables (IV) to answer such questions (Lai et al., 2014; Milkman, Patel, et al., 2021;
Milkman, Gromet, et al., 2021; Milkman et al., 2022). Unfortunately, conventional estimators
overestimate the value of the top-performing parameter (i.e., the parameter with the largest
estimated value) and exaggerate the variability of the parameters (Andrews et al., 2022, 2019).
These problems lead researchers to overstate the effectiveness of the top-performing treatments
and the differences between treatment effects.

Statisticians and econometricians have advanced multiple inference tools in recent years. Recent
publications describe new statistical techniques for inference after ranking (Andrews et al.,
2022, 2019), multiple hypothesis testing (Romano & Wolf, 2005), rank estimation (Mogstad
et al., 2020), and Bayesian estimation (Brown & Greenshtein, 2009; Cai et al., 2021; Dimmery
et al., 2019; James & Stein, 1992; Stein, 1956). However, these techniques are mathematically
complex and often inaccessible to all but professional statisticians.

multiple-inference solves this problem by implementing many of the latest multiple inference
tools in an easy-to-use statsmodels-like API. Additionally, multiple-inference provides
Jupyter binders with boilerplate code and narrative explanations to help researchers interpret
the output. These binders allow researchers to upload a .csv file of their conventional estimates
and click “run” to apply multiple inference tools to their data without downloading any software
or writing a single line of code.

multiple-inference initially implemented the inference after ranking techniques in Andrews et
al. (2019) and extended in Andrews et al. (2022). The latter paper uses multiple-inference

to compare many United States commuting zones regarding intergenerational mobility. The
World Bank Group is currently using multiple-inference to reanalyze the results of a multi-
treatment study designed to improve tax collection in Poland (see Hernandez et al. (2017) for
an earlier version of the paper).

State of the field
multiple-inference’s defining features are inference after ranking, rank estimation, and
hypothesis testing tools. Most importantly, multiple-inference contains the only imple-
mentation of the inference after ranking techniques developed in Andrews et al. (2019) and
Andrews et al. (2022) in any language. These techniques correct for the winner’s curse when
performing inference on top-performing parameters (e.g., the parameters that rank in the
top five according to conventional estimates). Specifically, multiple-inference implements
computationally efficient algorithms for computing quantile-unbiased point estimates and
confidence intervals with correct coverage for parameters of specific ranks.

Mogstad et al. (2020) has an associated R package for estimating rankings. For example, it
may estimate that a particular parameter has a 95% chance of being one of the three largest
parameters. It also computes sets of parameters that contain all of the truly largest K para-
meters with 95% confidence. multiple-inference contains the only Python implementation
of these techniques.

statsmodels implements multiple testing corrections that control the family-wise error rate
based on p-values, such as the Holm-Bonferroni correction (Seabold & Perktold, 2010).
multiple-inference implements a more powerful stepdown method based on simultaneous
confidence sets for jointly Gaussian distributed estimates that also controls the family-wise
error rate (Romano & Wolf, 2005). Additionally, multiple-inference implements a multiple
testing procedure based on q-values that control the false discovery rate (Storey & Tibshirani,
2003).

Bayesian estimators are essential tools for multiple inference, and robust packages for Bayesian
analysis already exist in Python. For example, statsmodels implements two Bayesian models
(binomial and Poisson) with independent Gaussian priors (Seabold & Perktold, 2010). pymc3 is
a comprehensive package for Bayesian inference (Salvatier et al., 2016). PosteriorStacker fits
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parametric and nonparametric empirical Bayes models based on posterior samples from multiple
datasets (Baronchelli et al., 2020). Additionally, Dimmery et al. (2019) implements a Gaussian
prior Bayesian model fit using Stein-type estimation. It distinguishes itself by incorporating
uncertainty about the estimates of the prior parameters into the posterior distribution.

multiple-inference aims to be a one-stop-shop for multiple inference and therefore includes
parametric and nonparametric Bayesian estimators. Its Gaussian prior Bayesian estimator is
most similar to the Stein-type estimator from Dimmery et al. (2019). However, Dimmery et al.
(2019) does not account for correlated errors. For example, if we underestimate the prior mean
and shrink all posterior estimates towards the estimated prior mean, we will underestimate many
parameters. multiple-inference accounts for this correlated uncertainty in its James-Stein
fit method of the Gaussian prior Bayesian model. Additionally, multiple-inference provides
a maximum likelihood fit method for the Gaussian prior model, also accounting for correlated
uncertainty about the prior parameters. Finally, multiple-inference’s parametric Bayesian
estimators provide an option to compute robust confidence intervals (Armstrong et al., 2020).
Robust confidence intervals ensure that the confidence intervals have correct coverage even if
the parametric assumptions are incorrect. While Armstrong et al. (2020) already has associated
R, Stata, and Matlab packages for robust parametric empirical Bayes confidence intervals,
multiple-inference contains only python implementation of this technique.

multiple-inference also implements several “intermediate products” that researchers can use
in other applications. The most notable is a truncated normal distribution with two advantages
over scipy’s truncated normal distribution (Virtanen et al., 2020). First, multiple-inference
uses an exponential tilting method to improve accuracy when the truncation set is far from the
mean of the underlying normal (Z. I. Botev, 2017; Z. I. Botev & l’Ecuyer, 2015). multiple-

inference uses the same exponential tilting method as the R package TruncatedNormal (Z.
Botev & Belzile, 2021). (TruncatedNormal works for multivariate truncated normal distrib-
utions using convex truncation sets that are essentially hypercubes. multiple-inference’s
implementation applies the same exponential tilting method to univariate truncated normal
distributions using both convex and concave truncation sets.) We can see the advantage of
multiple-inference’s implementation for the cumulative distribution function of a standard
normal truncated to the interval (8, 9) evaluated at 8.7.

»> from scipy.stats import truncnorm

»> truncnorm(8, 9).cdf(8.7)

1.0709836154559238

»> from conditional_inference.stats import truncnorm

»> truncnorm([(8, 9)]).cdf(8.7)

0.9978948153314305

Clearly, scipy’s result is incorrect because a CDF cannot exceed 1 by definition. multiple-

inference’s result, by contrast, is less than 1.

Second, both scipy and TruncatedNormal require convex truncation sets, whereas multiple-

inference accepts both convex and concave truncation sets. Z. I. Botev (2017) and Z.
I. Botev & l’Ecuyer (2015) provide an accurate exponential tilting method for computing
l(a, b) = Pr{a < z < b}, where z follows a standard normal distribution. We can use this
method to calculate the probability density function (PDF) and CDF of a standard normal
truncated to the interval (a, b),

f(z; (a, b)) =
φ(z)1{a < z < b}

l(a, b)
,

and

F (z; (a, b)) =
l(a, z)1{a < z < b}+ l(a, b)1{b ≤ z}

l(a, b)
,
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where φ is the PDF of a standard normal.

We can easily extend this to calculate the PDF and CDF of a standard normal truncated to
the union of N non-overlapping intervals (a1, b1)∪, ...,∪(aN , bN ),

f(z, (a1, b1)∪, ...,∪(aN , bN )) =
φ(z)

∑N
n=1 1{an < z < bn}∑N
n=1 l(an, bn)

,

and

F (z, (a1, b1)∪, ...,∪(aN , bN )) =

∑N
n=1

[
l(an, z)1{an < z < bn}+ l(an, bn)1{bn ≤ z}

]∑N
n=1 l(an, bn)

.
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