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Summary
The growing research focus on multi-principal element materials—spanning a variety of applica-
tions, such as electrochemical (Lun et al., 2020), structural (George et al., 2019), semiconductor,
thermoelectric, magnetic, and superconducting (Gao et al., 2018) materials—necessitates the
development of computational methodology capable of resolving details of atomic configuration
and resulting thermodynamic properties. The cluster expansion (CE) method is a formal
and effective way to construct functions of atomic configuration by coarse-graining materials
properties, such as formation energies, in terms of species occupancy lattice models (Sanchez
et al., 1984). The cluster expansion method coupled with Monte Carlo sampling (CE-MC) is
an established and effective way to resolve atomic details underlying important thermodynamic
properties (Van der Ven et al., 2018).

smol (Statistical Mechanics on Lattices) is a Python package for constructing generalized
applied lattice models, and performing Monte Carlo sampling of associated thermodynamic
ensembles. The representation of lattice models in smol is based largely on the CE formalism
(Sanchez et al., 1984). However, the package is designed to allow easy implementation of
extensions to the formalism, such as redundant representations (Barroso-Luque et al., 2021).
smol also includes flexible and extensible functionality to run Monte Carlo (MC) sampling
from canonical and semigrand-canonical ensembles associated with the generated lattice
models. smol has been intentionally designed to be lightweight and include a minimal set
of dependencies to enable smooth installation, use, and development. smol was conceived
primarily to enable development and implementation of novel CE-MC methodology but is now
sufficiently mature that it is already being used in applied research of relevant material systems.
(Chen et al., submitted 2022; Jadidi et al., in prep. 2022; Yang et al., 2022; Yang & Ceder, in
prep. 2022)

Statement of need
Several high-quality software packages implementing CE-MC methodology, such as ATAT (A.
van de Walle et al., 2002), CASM (Thomas et al., 2015/2022), CLEASE (Chang et al., 2019), and
icet (Ångqvist et al., 2019) are readily available either open source or by request. However,
smol is distinct from existing CE-MC packages in both vision and implementation for the
following three main reasons:

1. smol has been designed to easily develop, implement and test new methodology for the
representation, fitting, and inference of applied lattice models beyond standard CE-MC
methodology. The package has a heavily object-oriented and modular design that
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closely follows mathematical and methodological abstractions, which enables hassle-free
implementation of methodology extensions. Furthermore, smol is written in pure Python
(with a few critical components implemented in Cython to maintain performance) making
it particularly developer friendly.

2. smol is the only package implemented using pymatgen—a widely used Python materials
analysis library (Ong et al., 2013). This allows seamless use of pymatgen functionality
for pre and post-processing. Additionally, several other Materials Project (Jain et al.,
2013) packages, such as Fireworks (Jain et al., 2015), atomate/atomate2 (Mathew et
al., 2017; Rosen et al., 2020/2022), database creation, and management tools can be
leveraged alongside smol to include configuration thermodynamic calculations as part of
more elaborate materials analysis workflows.

3. smol is designed to be intentionally lightweight and dependency lean by delegating much
of the non-core functionality to already well-established Python packages, for example,
general structure manipulations, enumeration, and linear regression. This makes smol

easy to install, easy to use, easy to develop, easy to extend, and easy to test.

smol should be considerably more user and developer friendly than standalone C++ packages
ATAT and CASM. In comparison to other Python implementations, in particular icet—which
is superbly well documented and user-friendly—smol stands out as largely more developer
friendly and easier to extend. In the context of all available packages, smol is geared towards
efficient and open development of new methodology that is also user-friendly, thus allowing
quick development-to-application turnaround time.

Formalism overview
The atomic configuration of a crystalline material can be represented by a string of occupation
variables, 𝜎 = (𝜎1, 𝜎2,… , 𝜎𝑁). Where the value of each occupation variable 𝜎𝑖 represents the
atomic species occupying the i-th site in an N-site supercell. Accordingly, any generalized lattice
model of the atomic configuration can be written as a sum of multi-site (cluster) interaction
functions,

𝐻(𝜎) = ∑
𝑆⊆[𝑁]

𝐻𝑆(𝜎𝑆) (1)

Where [𝑁] = {1, 2, ,𝑁} is the set of all site indices, and 𝜎𝑆 is the set of all occupation
variables for the sites in a cluster 𝑆.

Two important considerations enable practical representations for effective fitting of applied
lattice models:

1. A general procedure to construct function sets that span the function space over
configurations.

2. Leveraging the symmetries of the underlying crystal structure to reduce the total function
space to a subspace of symmetrically invariant functions only.

These two considerations are at the foundation of the original CE method (Sanchez et al.,
1984), however, these considerations have been limited only to a small number of variations of
the same formal representation. For example, consideration (1) has been limited only to a
handful of different basis sets. In smol we have sought to implement a generalized version of
the original CE method, where any symmetrically invariant lattice model is represented as,

𝐻(𝜎) = ∑
𝛽

𝑚𝛽𝐽𝛽Θ𝛽(𝜎) (2)
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where 𝑚𝛽 are crystallographic multiplicities and 𝐽𝛽 are expansion coefficients. The correlation
functions Θ𝛽 take as input different sets of clusters of sites 𝑆 that are symmetrically equivalent
under permutations corresponding to the symmetries of the underlying crystal structure’s
space group. The set of all correlation functions {Θ𝛽}, unlike the classical CE method, is
not limited only to those that represent a basis set but can be any complete set of functions
(linearly independent or redundant) that spans the symmetry invariant function subspace over
configurations 𝜎.

Following the original CE method formalism, the correlation functions Θ𝛽 are constructed
from symmetrically adapted averages of cluster product functions,

Φ𝛼(𝜎) =
𝑁
∏
𝑖=1

𝜙𝛼𝑖
(𝜎𝑖) (3)

Θ𝛽(𝜎) =
1
|𝛽|

∑
𝛼∈𝛽

Φ𝛼(𝜎) (4)

Where the site functions 𝜙𝛼𝑖
are single variable functions of each occupation variable; such

that the set of all included site functions for each site 𝑖 span the associated space of all possible
occupations of a given site. The multi-indices 𝛼 (|𝛼| = 𝑁), serve as indices for the site
function corresponding to each site in the supercell; and the orbits 𝛽 are sets of symmetrically
equivalent multi-indices.

Functions represented by an appropriately truncated version of Equation 2 can be fitted to
properties calculated with computationally intensive methods, such as first-principles electronic
structure methods. The fitting procedure is predominantly done with linear regression using
advanced regularization techniques. Subsequently, the resulting lattice model can be used in
MC simulations to sample configurations for a corresponding statistical mechanical ensemble in
order to efficiently compute thermodynamic functions and properties of atomic configuration.

Package overview
The smol Python package is deliberately designed to be easily extensible and provide useful
abstractions such that new methodology will rarely need to be implemented from scratch.

Classes and functions for representation and construction of functions of configuration (i.e. defin-
ing terms in a cluster expansion) are included in the smol.cofe module. Notably, the following
object-oriented abstractions allow flexible definitions and the ability to easily implement
extensions:

• Classes and functions to define site function sets, which make up the basic building
blocks for an expansion as detailed in Equation 3. The package includes functionality to
generate both basis and redundant sets with any of the commonly used site function
sets, (polynomial (Sanchez et al., 1984), trigonometric (Axel van de Walle, 2009), and
occupancy indicator (Zhang & Sluiter, 2016)), as well as abstractions to effortlessly
implement new function sets.

• Classes to represent clusters of sites S and groupings of symmetrically equivalent cluster
functions to represent the terms in the sum of Equation 2. Additionally, the package
includes functionality to automatically generate these objects based on a given disor-
dered structure—that may include neutral species, ionic species with assigned oxidation
states, or vacancies—by leveraging pymatgen’s established and flexible representations
of structures and associated symmetries.

• Classes to include additional interaction terms to a CE-based lattice model to improve
training convergence. Currently, the package only includes an electrostatic pair potential
for ionic structures (Richards, 2017), but the concept applies to any simple interaction
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model such as the reciprocal space CE constituent strain interaction (Laks et al., 1992),
or any other empirical or fitted pair potential.

• Classes and functions to preprocess and generate feature matrices and fitting data
corresponding to a defined set of correlation functions, datasets of relaxed structures,
and computed energies from any first-principle, machine learning, or empirical potential
calculations.

Additionally, the functionality to sample thermodynamic properties for a fitted lattice model
under both canonical and semi-grand canonical ensembles is included in the smol.moca module.
The smol.moca module includes flexible object-oriented abstractions, including the following:

• Classes and functions to quickly evaluate a cluster expansion for a given configuration
and local configuration changes over a predefined supercell size and shape. Critical
functions are implemented in Cython so that MC performance is not compromised.

• Classes to implement complex MC algorithms. The different components of MC are
implemented as independent objects and utilities, that include classes to define config-
uration transition proposals, statistical ensembles, sampled value traces, and various
Monte Carlo algorithm kernels. This enables customization of MC sampling methods,
ensembles, and computed properties without the need to re-write the sample generation,
saving, and streaming to file functionality.

All classes and functions included in smol are thoroughly documented and several usage
examples are available in the documentation.
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