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Summary
Social scientists often investigate human reasoning by collecting relative similarity judgements
with crowdsourcing services. However, this often requires too many human responses to be
practical for large experiments. To address this problem, we introduce software called Salmon,
which makes intelligent choices on query selection (aka active machine learning or adaptive
sampling) while collecting relative similarity judgments from crowdsourcing participants. Salmon
is usable by experimentalists because it requires little to no programming experience and only
requires an Amazon AWS account for launching (though a local install is available). Extensive
simulations and experiments suggest that Salmon requires 2 to 3 times fewer response than
random sampling.

Statement of need
Relative similarity judgments take the form “is item 𝑎 or 𝑏 more similar to item ℎ?” These
queries work well with human working memory limitations, and have been used successfully
to characterize human perceived similarity between faces (Sankaranarayanan et al., 2016),
vehicles (Kuma et al., 2019) and shoes (Heim et al., 2015b).

Typically, experimentalists require an inordinate number of human responses (about 10,000) to
produce an accurate embedding when making a similarity map in 𝑑 = 2 dimensions of 𝑛 = 50
chemistry molecules (Mason et al., 2019). The number of human responses required will scale
like 𝒪(𝑛𝑑 log𝑛), which means that asking about 𝑛 = 100 molecules for 𝑑 = 3 dimensions will
likely require about 35,000 responses.

Many “active machine learning” methods have been proposed to reduce the number of queries
required (Tamuz et al., 2011; Van Der Maaten & Weinberger, 2012). These show gains, at
least offline when computation is not a limitation. However, the online deployment of these
algorithms has posed more challenges (Jamieson et al., 2015).

Related work
Systems to deploy active machine learning (ML) algorithms to crowdsourcing audiences include
SMART (Chew et al., 2019), NEXT (Jamieson et al., 2015) and Microsoft’s Multiworld Testing
Decision Service (Agarwal et al., 2016). The most relevant related work, NEXT is capable
of serving triplet queries to crowdsourcing participants (Jamieson et al., 2015). In this work
the authors concluded that “there is no evidence for gains from adaptive sampling.” However,
other work has found gains from adaptive sampling when computation is not a priority (Heim
et al., 2015b).

Several active algorithms for triplet embedding have been developed (Tamuz et al., 2011; Van
Der Maaten & Weinberger, 2012). These algorithms require searching queries and fitting
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the responses to the underlying noise model. With a naive computation, scoring a single
query requires 𝒪(𝑛𝑑) floating point operations (FLOPs), and the embedding typically requires
significant computation (Ma et al., 2021; Vankadara et al., 2019), though some work has been
done to reduce the amount of computation (Heim et al., 2015a).

Design goals
Salmon’s main design goals are below:

1. Generate accurate relative similarity embeddings.
2. Require fewer responses than random sampling to generate an embedding.
3. Allow experimentalists to easily achieve both items above.

One method to achieve goal (2) above is to use an active machine learning (ML) sampling
algorithm. This task requires considering how to create a responsive query page with a service
to run active ML algorithms. The result is a frontend server that serves queries and receives
answers, and a backend server that searches queries and processes answers – notably, not the
same data flow that NEXT has (Jamieson et al., 2015), though it is common in other systems
(Agarwal et al., 2016; Chew et al., 2019).

To verify goal (2), extensive crowdsourcing experiments and simulations have been run, and have
compared with the most relevant work (Jamieson et al., 2015). In this, Salmon’s architecture
required modification of the query search algorithm to circumvent some experimental design
issues. With these modifications, we have observed active ML algorithm gains in extensive
experiments and simulations. To the best of the author’s knowledge, this is a novel achievement
in the crowdsourcing context.

Goal (1) is aided by the fact that Salmon integrates a popular deep learning framework, PyTorch
(Paszke et al., 2019). This allows for easy customization of the underlying optimization method
during both online and offline computation, including by the experimentalist managing Salmon
if so desired.

Goal (3) is enabled by a relatively simple launch through Amazon AWS using Amazon Machine
Images (AMIs).1 The AMI for Salmon2 pulls the latest release of Salmon from GitHub and
then launches Salmon. After some other tasks (e.g., opening ports, etc), Salmon is ready be
launched. Salmon requires fairly minimal computational resources; all the experiments and
simulation were performed with t3.xlarge Amazon EC2 instance, which has 4 cores, 16GB of
memory and costs about $3.98 per day.

After launch, Salmon can start an experiment with stimuli consisting of text, images, video or
HTML strings. It provides a mechanism to monitor an ongoing experiment, which includes the
following information:

• Basic experiment statistics: number of unique users, launch date, etc.
• Server performance: processing time for different endpoints, rate responses received, etc.
• Client timings, including response and new query latency.
• Embedding visualization and a list of targets in the embedding.

In addition, Salmon provides links to download the responses and configuration. Salmon
also supports experiment persistence through downloading and uploading experiments. The
embedding that Salmon generates can be downloaded, at least if active samplers are used.
Regardless of the sampler used, Salmon can be used to generate the embeddings offline from
the downloaded responses.

1A local install is available, and only requires Docker. Collection of crowdsourced responses will require
running a web server or collecting in-person responses (though a local install may be useful for development).

2Details are at https://docs.stsievert.com/salmon/installation
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Uses
Salmon has been used by several groups, including psychologists at the University of Wiscon-
sin–Madison and the Louisiana State University.
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