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Summary
The haldensify R package serves as a toolbox for nonparametric conditional density estimation
based on the highly adaptive lasso, a flexible nonparametric algorithm for the estimation of
functional statistical parameters (e.g., conditional mean, hazard, density). Building upon an
earlier proposal (Dı́az & van der Laan, 2011), haldensify leverages the relationship between
the hazard and density functions to estimate the latter by applying pooled hazard regression to
a synthetic repeated measures dataset created from the input data, relying upon the framework
of cross-validated loss-based estimation to yield an optimal estimator (Dudoit & van der Laan,
2005; van der Laan et al., 2004). While conditional density estimation is a fundamental problem
in statistics, arising naturally in a variety of applications (including machine learning), it plays
a critical role in estimating the causal effects of continuous- or ordinal-valued treatments. In
such settings this covariate-conditional treatment density has been termed the generalized
propensity score (Hirano & Imbens, 2004; Imai & Van Dyk, 2004), and, like its analog for
binary treatments (Rosenbaum & Rubin, 1983), serves as a key ingredient in developing both
inverse probability weighted and doubly robust estimators of causal effects (Dı́az & van der
Laan, 2012, 2018; Haneuse & Rotnitzky, 2013; Hejazi et al., 2022).

Statement of Need
Conditional density estimation is an important fundamental problem in the computational
sciences and statistics, having garnered (independent) attention in machine learning (Sugiyama
et al., 2012; Takeuchi et al., 2009), semiparametric estimation (Cheng & Chu, 2004; Qin,
1998), and causal inference (Dı́az & van der Laan, 2011; Hirano & Imbens, 2004; Zhu et
al., 2015). Techniques for the nonparametric estimation of this quantity, complete with
asymptotic optimality guarantees, have received comparatively limited attention. Similarly,
despite the critical role of the generalized propensity score in the estimation of the causal
effects of continuous treatments, this nuisance parameter is usually estimated with restrictive
parametric modeling strategies, ultimately sharply limiting the quality of downstream point
estimates and corresponding statistical inference (e.g., hypothesis tests, confidence intervals).
Approaches for flexibly estimating the generalized propensity score have received limited
attention (Dı́az & van der Laan, 2011; Zhu et al., 2015), and software implementations of
these techniques are, to the best of our knowledge, exceedingly rare, compared to, for example,
regression algorithms for estimating conditional means. haldensify aims to partially fill this
gap by implementing a flexible, nonparametric estimator of a conditional (or marginal) density,
appropriate for estimation of the generalized propensity score and useful for the construction of
inverse probability weighted or doubly robust estimators of a class of causal effect parameters
tailored to continuous treatments.
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Conditional Density Estimation and Modern Causal Inference
Conditional density estimation is a challenging and fundamental problem in statistical learning
theory. Owing to the high frequency with which conditional density estimation arises in
statistics and machine learning, a wide range of techniques have been proposed – under a
correspondingly wide range of assumptions. Some techniques are based in kernel smoothing
(e.g., Takeuchi et al., 2009), others in specialized neural network architectures (e.g., Neuneier
et al., 1994), and others still in the direct estimation of ratios of conditional densities (e.g.,
Sugiyama et al., 2012). Most approaches make restrictive (parametric) assumptions about the
form of the underlying density functional or fail to achieve convergence rates (of the estimator
to the true, underlying conditional density) necessary for semiparametric inference. As such,
analysts must often negotiate a difficult tradeoff between tractability, ease of implementation,
and optimality properties of the chosen estimator. To partially resolve this open challenge,
haldensify implements a nonparametric conditional density estimation procedure, making few
assumptions regarding the underlying form of the density functional, with rate-convergence
guarantees compatible with modern semiparametric inference and causal machine learning.

The algorithm implemented in haldensify is an improved and tailored version of the proposal
of Dı́az & van der Laan (2011), who formulated a nonparametric conditional density estimator
based on the relationship between the density and hazard functions. This algorithm proceeds
by, first, partitioning the support of the dependent variable into a user-specified number of bins
and recasting the input dataset into a repeated measures structure, in which each observational
unit is represented by a variable number of records (with the terminal record corresponding
to the position of the bin over the discretized support into which the observed value of the
dependent variable falls). Next, the hazard probability, conditional on any covariates, of the
dependent variable falling in a given bin along the discretized support is estimated by applying
the highly adaptive lasso (HAL) algorithm (Benkeser & van der Laan, 2016; van der Laan,
2015, 2017) (in this case, for binary regression), via the hal9001 package (Coyle et al., 2022;
Hejazi, Coyle, et al., 2020); this step is often labeled “pooled hazards” regression. Under
plausible assumptions on the global variation of the target functional, HAL has been shown to
converge at a suitable rate (≈ 𝑛−1/3 per Bibaut & Laan (2019)) for standard semiparametric
efficiency theory to apply to any estimators incorporating this conditional density estimator;
however, in this application, the ℓ1 (i.e., lasso) penalty of the HAL estimator is updated to
utilize a loss function suitable for density estimation (Dudoit & van der Laan, 2005; van der
Laan et al., 2004). In a final step, the conditional hazard estimates are rescaled to conditional
density estimates by dividing the estimated hazard probabilities by the respective bin widths.

The advantages derived from the flexibility and rate-convergence properties of this algorithm are
especially apparent in causal inference problems with continuous treatments. In such problems,
a key nuisance parameter is the generalized propensity score (GPS), the conditional density of
the treatment, given covariates. This nuisance parameter is required to be well-estimated (in
a rate-convergence sense) for the construction of asymptotically efficient estimators (e.g., of
treatment effects), which attain the minimal possible variance in a given regularity class. Such
estimators are desirable since, theoretically speaking, they admit the tightest confidence intervals
and most sensitive hypothesis tests, making inference based upon these more informative for
downstream decision making. For example, the GPS is a nuisance parameter required for
estimation of the counterfactual mean of a modified treatment policy (MTP) (Dı́az & van der
Laan, 2018; Haneuse & Rotnitzky, 2013), a type of intervention that perturbs the natural (or
observed) value of the treatment. Doubly robust estimators of this counterfactual quantity are
implemented in the txshift R package (Hejazi & Benkeser, 2020, 2022), which relies upon
haldensify for estimation of the GPS and has been used in estimating counterfactual vaccine
efficacy based on MTPs interpretable as corresponding to hypothetical (next-generation)
vaccines that modulate the activity of target immunologic biomarkers in vaccine efficacy
clinical trials (Hejazi, van der Laan, et al., 2020). Alternative, asymptotically efficient and
nonparametric inverse probability weighted (IPW) estimators (Ertefaie et al., 2022) of such
counterfactual mean parameters are implemented in haldensify’s ipw_shift() function, which
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constructs these IPW estimators by combining haldensify’s GPS estimator (implemented
in the eponymous haldensify() function) with the sieve estimation framework to select
an asymptotically optimal IPW estimator with respect to criteria rooted in semiparametric
efficiency theory; Hejazi et al. (2022) give a formal description of these novel IPW estimators.

haldensify’s Scope
The haldensify R package combines the binning and hazard estimation strategy of Dı́az & van
der Laan (2011) with HAL regression (Benkeser & van der Laan, 2016), resulting in a flexible,
nonparametric conditional density estimator. This procedure – accessible via the eponymous
haldensify() function – relies upon the hal9001 R package (Coyle et al., 2022; Hejazi, Coyle,
et al., 2020) for the HAL regression step and upon the origami R package (Coyle & Hejazi,
2018) for cross-validated selection of tuning parameters (e.g., number of bins, ℓ1 regularization)
so as to empirically minimize the negative log-density loss (Dudoit & van der Laan, 2005).
haldensify additionally adjusts the proposal of Dı́az & van der Laan (2011) to (1) incorporate
sample-level weights and (2) apply HAL regression to the repeated measures data structure
in a manner tailored for density estimation on the hazard scale. The nonparametric IPW
estimators of Hejazi et al. (2022) have been implemented in the ipw_shift() function.

In order to ensure a simplified and minimal API, the haldensify package exposes only a
limited set of functions: (1) the haldensify() function, which facilitates the estimation of
conditional (or marginal) densities as described above, and (2) the ipw_shift() function,
which implements nonparametric IPW estimators of the causal effect of an additive modified
treatment policy. As IPW estimators require estimation of the generalized propensity score
as an intermediate (nuisance) step, this latter function internally calls the former; more-
over, the ipw_shift() function and the various selectors to which it provides access (e.g.,
selector_gcv() for estimator selection based on “global” cross-validation) have been studied
from a theoretical-methodological perspective in Hejazi et al. (2022). The haldensify()

function is complemented by appropriate predict() and plot() methods, the former to allow
for the estimated conditional density to be evaluated at new values of the variable of interest
and its conditioning set and the latter to visualize the resultant estimators along the regular-
ization trajectory. The ipw_shift() function is accompanied by a corresponding confint()

method to easily generate confidence intervals around the IPW point estimates. The S3 classes
returned by both of these functions have custom print() methods to allow for their results to
be easily inspected. Several internal utility functions, including, for example, cv_haldensify(),
map_hazard_to_density(), and selector_dcar(), implement core aspects of the conditional
density estimation and nonparametric IPW estimation methodology.

Availability
Future software development efforts will be focused primarily along two avenues: (1) improv-
ing the computational aspects of the conditional density estimation procedure, possibly to
include random sampling from the internally generated repeated measures dataset, and (2)
further adjustments to the undersmoothing estimator selection strategies implemented for
nonparametric IPW estimation, to be based on future methodological progress. Software
maintenance efforts will focus on ensuring that the package remains compatible with future
versions of the hal9001 package (Coyle et al., 2022; Hejazi, Coyle, et al., 2020). Currently,
stable releases of the haldensify package are made available via the Comprehensive R Archive
Network (CRAN, R Core Team, 2022) at https://CRAN.R-project.org/package=haldensify,
while development efforts are carried out on the package’s version-controlled repository, pub-
licly hosted at https://github.com/nhejazi/haldensify. To date (mid-September 2022), CRAN
records indicate that haldensify has been downloaded over 14,400 times.
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