DOI: 10.21105/joss.04533

Software
= Review &7
= Repository @@
= Archive &0

Editor: Prashant K Jha &7
Reviewers:

= QAthene-ai
= @jakdot

Submitted: 07 April 2022
Published: 26 August 2022

License

Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

The Journal of Open Source Software

EPICpy: A Python Interface for EPIC Computational
Cognitive Modeling

Travis L. Seymour!

1 University of California Santa Cruz, US

Summary

Executive-Process Interactive Control (EPIC) is a computational cognitive architecture that
specifies a theory of human performance and a facility to create behavioral simulations using
that theory (Meyer & Kieras, 1997a, 1997b). EPIC compacts decades of psychological theory
and findings into a rich set of processors, including those that model sensory, perceptual,
motor, cognitive, and memory subsystems of the human mind. EPIC is particularly suited
to stimulus-response type human performance tasks including those involving multitasking
and task-switching. Although many research articles, technical reports, talks, and conference
presentations have been published using EPIC, these have been produced by a relatively small
number of researchers. One reason EPIC has not been used more widely is due to its complex
design and basis in the C+4 programming language. Another challenge is the complete lack
of documentation on how to set up and use its development environment. A final limitation is
that EPIC is only available for MacOS. None of these issues are a problem for an experienced
C++ developer, but they can be significant hurdles for those with limited C++ expertise,
a state that is exceedingly common in the cognitive science community most likely to be
interested in using EPIC.

Rather than C+4+, the current approach uses the popular Python programing language. Because
Python is now the language used in most introductory programming courses, researchers,
their collaborators, and their students are more likely to be familiar with it than with C++.
EPICpy not only provides a new Python-based graphical interface for EPIC modeling, but it
allows programming simulated tasks, and perceptual models in Python (Seymour, 2022b). In
addition, EPICpy is cross-platform and provides executables for Linux, MacOS, and Windows
(via WSL2). It is also possible to use EPICpy with the included Docker file on any operating
system. EPICpy is accompanied by rich documentation (Seymour, 2022a) for those wanting to
install and run existing simulations, those wishing to create and test new simulations, as well
as those wishing to set up an environment for developing EPICpy itself. Hopefully EPICpy and
its documentation will facilitate wider use of EPIC in cognitive science research, as well as
easing the process of teaching EPIC to a new generation of modelers in the classroom and in
workshops.

Current Approach Using EPICapp

Interest in using computational cognitive architectures to understand human cognitive per-
formance has hardly waned for 40 years (Kotseruba & Tsotsos, 2020). Among the 50 or so
actively used cognitive architectures, EPIC is one of the few allowing high-fidelity modeling of
tasks relying on perceptual, motor, and control processes. Despite this, it can be challenging
to create new EPIC simulations for many cognitive scientists. The overview of an EPIC
stimulation can be seen in Figure 1.

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 1
https://doi.org/10.21105/joss.04533.


https://doi.org/10.21105/joss.04533
https://github.com/openjournals/joss-reviews/issues/4533
https://github.com/travisseymour/EPICpy
https://doi.org/10.5281/zenodo.7020282
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/Athene-ai
https://github.com/jakdot
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04533

The Journal of Open Source Software

Task Device

Simulation Controller

EPICapp
Application

EPIC Architecture

my_device.h,
my_device.cpp

my_encoder.h
my_encoder.cpp

my_rules.prs

Perceptual Task Rules

Encoder

Production Rules

Figure 1: Overview of EPICapp’'s C++ Based Modeling.

The EPIC Architecture exists as a compiled dynamically-linked library (a MacOS .dylib file)
called EPICLib and is based on 64,000 lines of C++ code across 321 files. It embodies both
the psychological model of a human performer and the code that allows one to use that model
to create simulations. EPICapp is a MacOS Graphical User Interface (GUI) application that
allows users to load various model components and control EPIC simulations. EPICapp is
written in C++ and Objective-C. Standard EPIC modeling involves working with some subset
of the following components (see Figure 1):

= Task Device. In EPIC a device is a simulated task environment that typically emulates

a related human task. It includes virtual outputs such as a computer screen capable
of displaying arbitrary graphics and text, virtual sound sources (speakers, headphones,
human voice, etc.), and a variety of input devices such as a keyboard, mouse, joystick,
button box, microphone. EPIC devices are written in C++.

Perceptual Encoders. Although EPIC already models how visual and auditory information
from the device is encoded by the virtual performer, an EPIC modeler can specify alternate
models for how visual and/or auditory information is encoded in the task being studied.
Perpetual encoders are written in C++.

Task Rules. Task rules primarily embody the researcher’s theory for how humans perform
the task under investigation. If this performance theory reflected in the rules is correct,
EPIC will likely produce simulated data (e.g., RT, eye-movements, response accuracy,
etc.) that matches data from humans performing equivalent tasks. The hypothesized
performance strategy is not expressed using a programming language, instead it is written
as a set of IF-THEN production rules that specify associations between perceptual or
memory states and cognitive (e.g., storing information in working memory) or motor
actions (e.g., looking at a visual object, or pressing a button).

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 2

https://doi.org/10.21105/joss.04533.


https://doi.org/10.21105/joss.04533

The Journal of Open Source Software

Previous Research Using EPIC via EPICapp

Many studies have been published with EPIC models created using the existing EPICapp
application®:

= Kieras (2018) presented a new EPIC modeling approach using “Explanatory Sequences”
with which the author showed classic visual search tasks can be explained without visual
attention.

= Kieras & Wakefield (2014) proposed a novel computational account of how people can
follow individual streams of speech in a context full of irrelevant speech (i.e., the Cocktail
Party Effect)

= Zhang & Hornof (2014) used a computer-cluster to search in parallel for parameter
combinations that helped reveal the subtle ways in which micro-strategy choices in
complex multitasking environments can lead to individual differences in performance.

= Seymour & Schumacher (2009) used an EPIC model for an exclude-recognition task to
predict electromyographic signals during performance.

= Meyer et al. (2001) showed how EPIC can be parameterized to simulate human
performance in older adults and revealed that some supposed age-related declines are
actually due to strategic choices.

Statement of Need

There are several issues that motivate a new approach to EPIC modeling. One is that it is
currently not easy to publicly obtain a working copy of the EPICapp software. What is available
is the C++ source code for EPICLib and EPICapp for MacOS. This code is available on a
GitHub website (Kieras, 2016), but it contains no information about how to set up or use the
required development environment. Furthermore, there is no information on how to program
devices, or encoders for use with EPICapp. Without instructions, use of this code would likely
be restricted to experienced C4++ programmers capable of reading through the source code
and extracting the necessary information.

Although there have been a few conference-based workshops given by David Kieras and
colleagues (e.g., Kieras & Hornof, 2004), these have been limited to writing and editing
production rules for existing task devices to avoid the need for C++ expertise. Although there
are 2 publicly available EPIC models?, they are both offered as raw code only. To compile these
devices for use in EPICapp, the entire EPICLib/EPICapp development environment would have
to be set up. Thus, there is currently no option for non-C++ programmers.

There is obviously no problem with a simulation system being targeted to C++ programmers,
and the aforementioned lack of development documentation could be remedied by someone
with sufficient knowledge. However, it has become increasingly rare for the target Cognitive
Science audience of EPIC to have any, let alone sufficient, expertise in C++. According to
recent surveys administered by TIOBE BV (2022) and Stack Overflow Inc. (2021), the Python
programming language is ranked significantly higher in popularity compared to C++ (currently
Python is #1) and is additionally most likely to be taught as an introductory language in
college courses. This presents a mismatch between the skills required to use EPIC and those
being taught in Cognitive Science and Computer Science programs.

A second major issue is one of platform; only offering EPIC for the MacOS operating system
further limits the potential pool of users.

Finally, EPIC only allows for basic descriptive statistics such as arithmetic mean and correlation,
as well as goodness of fit statistics like R™2 and RMSE. Any other analyses would have to be

1For a larger curated list, see https://travisseymour.github.io/EPICpyDocs/epicresources/, and for a more
complete collection, see https://www.researchgate.net/profile/David-Kieras
2https://github.com /dekieras/EPIC_HZ_model and https://github.com/dekieras/EPIC_BMS_model

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 3
https://doi.org/10.21105/joss.04533.


https://doi.org/10.21105/joss.04533

SS

The Journal of Open Source Software

programmed from scratch in C++ by the modeller who wished to use them. Alternatively, a
simulation system written in Python could take advantage of a growing cornucopia of available
tools for numerical processing, statistical analyses and graphing.

A New Approach Using EPICpy

EPICpy offers a new cross-platform GUI application for EPIC modeling, with executables
and detailed instructions made publicly available for Linux (Ubuntu v18 and newer, and
related Debian-based distributions), MacOS (Catalina v10.15 and newer), as well as Windows
(v10.21H2 and newer via the Window Subsystem for Linux v2). For potential users on other
operating systems, a Dockerfile is also provided for containerized EPIC modeling.

EPICpy is based on the Python programming language instead of C++ and follows the structure
shown in Figure 2.

Simulation Controller

EPIC Architecture

Perceptual

Task Device Task Rules

Encoder

Production Rules

Figure 2: Overview of EPICpy’s Python-Based Modeling.

Although EPICLib (the compiled library containing the EPIC architecture) is still programmed
in C4++, all other components of the simulation system are programmed in Python. This
means that modellers can program new task devices and perceptual encoders in Python. It is
important to note that devices and encoders do not need to be compiled in EPICpy — they
are loaded as raw Python files directly into the application (along with a set of production
rules). Thus, most EPIC modellers can use EPICapp without needing to set up the EPICpy
development environment. This also means that devices and encoders can be shared between
EPIC modelers without regards to operating system. To make it easy to create new devices
and encoders, two demo models (including devices, encoders, and rulesets) are provided
that can be edited and extended as necessary. Because the EPICpy GUI application is itself
programmed in Python, those wishing to alter or extend EPICpy can do so, but in this case,
EPICpy's development environment will need to be set up. Whether using one of the available
EPICpy binaries, or running EPICpy from the development environment, detailed step-by-step

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 4
https://doi.org/10.21105/joss.04533.


https://doi.org/10.21105/joss.04533

The Journal of Open Source Software

instructions for getting started are available on the EPICpy documentation website (Seymour,
2022a).

In addition to its popularity, another advantage of using Python is the availability of powerful
and easy to use statistics and graphing packages. In typical EPIC workflows, comparing
simulated data to human data using statistics and graphs require moving the datafile generated
by EPIC into other applications. By exposing the Pingouin statistics and graphing package
(Vallat, 2018), EPICpy allows device programmers access to statistical analyses ranging from
simple descriptive statistics to machine-learning based analyses. It also provides both the
matplotlib and seaborn packages for graphing. Thus, via EPICpy’s new statistical output
window, device modellers can present complex statistics and graphs directly within the EPICpy
GUI following each simulation run.

EPICpy includes a large list of improvements and enhancements not available in EPICapp with
the goal of enhancing EPIC modelling for existing and new EPIC modellers. These include
powerful new features such as parameterized runs, batch rule running, automatic model-specific
reinstatement of settings and GUI metrics. A complete list of enhancements is available in the
documentation.

Limitations

Getting an existing C++ library to work seamlessly with Python code is no easy feat. Although
this coordination was partially aided by the cppyy library for the automatic creation of
C++/Python bindings (Lavrijsen & Dutta, 2016), the back and forth translation between
C++ and Python has a significant penalty in run-time. In addition, having the entire user
interface, device, and all encoders in Python also contributes to a significant runtime penalty
compared to EPICapp. For example, running the provided demo Choice-Task “Hard” condition
for 100 trials in EPICpy takes 1.36 seconds to complete compared to 0.81 seconds in EPICapp,
making the C++ version 40% faster than the Python version®. When continuous graphic and
text output are enabled, the speed advantage of C++ is even more dramatic. However, it is
our hope that this trades off with the decrease in development time typically associated with
moving from C++ to Python, especially for inexperienced developers.

Because EPICLib itself is still compiled from C++ code, making changes to the EPIC
architecture itself still requires C++ expertise. On the other hand, this means that future
updates to EPIC (which is still being developed by David Kieras in C4++) can be easily
incorporated into EPICpy just by compiling the library and copying it into the EPICpy resources
folder.

Acknowledgements

| acknowledge the generous contributions of David Kieras who helped me understand the
architecture and design patterns used in the EPIC C+4 code, as well as in producing a
workable EPICLIb commandline interface that served as the starting point for EPICpy. |
also acknowledge the contributions of Allison Hefley and Holly Pike who helped with earlier
attempts to create a cross-platform version of EPIC.

References

BV, T. S. (2022). EPICpy documentation. In TIOBE Index Website. TIOBE Software BV.
https://www.tiobe.com /tiobe-index/

3These times were achieved by disabling all graphical view output, disabling all text output, and setting all
model step delays to 0.0 during each run. Context: Pop!_OS Linux v21.10, AMD Ryzen 7 3700X with 8(16)
cores @ 3.6GHz, 64GB RAM

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 5
https://doi.org/10.21105/joss.04533.


https://www.tiobe.com/tiobe-index/
https://doi.org/10.21105/joss.04533

SS

The Journal of Open Source Software

Inc., S. E. (2021). 2021 developer survey. In StackOverflow. Stack Exchange Inc. https:
//insights.stackoverflow.com /survey/2021#most-popular-technologies-language

Kieras, D. (2018). Visual search without selective attention: A cognitive architecture account.
Topics in Cognitive Science, 11. https://doi.org/10.1111 /tops.12406

Kieras, D. (2016). Executive-process interactive control (EPIC) computational cognitive
architecture. In GitHub repository. GitHub. https://github.com/dekieras/EPIC

Kieras, D., & Hornof, A. (2004, January). Building cognitive models with the EPIC architecture
for human cognition and performance. Proceedings of the 6th International Conference on
Cognitive Modeling. ISBN: 9781135603137

Kieras, D., & Wakefield, G. (2014). Developing models for multi-talker listening tasks using
the EPIC architecture: Wrong turns and lessons learned.

Kotseruba, Y., & Tsotsos, J. (2020). 40 years of cognitive architectures: Core cognitive abilities
and practical applications. Artificial Intelligence Review, 53. https://doi.org/10.1007/
s10462-018-9646-y

Lavrijsen, W. T. L. P., & Dutta, A. (2016). High-performance python-c++ bindings with PyPy
and cling. 2016 6th Workshop on Python for High-Performance and Scientific Computing
(PyHPC), 27-35. https://doi.org/10.1109/PyHPC.2016.008

Meyer, D., Glass, J., Mueller, S., Seymour, T. L., & Kieras, D. (2001). Executive-process
interactive control: A unified computational theory for answering 20 questions (and
more) about cognitive ageing. European Journal of Cognitive Psychology, 13, 123-164.
https://doi.org/10.1080/09541440042000250

Meyer, D., & Kieras, D. (1997a). A computational theory of executive cognitive processes and
multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3—65.
https://doi.org/10.1037/0033-295X.104.1.3

Meyer, D., & Kieras, D. (1997b). A computational theory of executive cognitive processes
and multiple-task performance: Part 2. Accounts of psychological refractory-period
phenomena. Psychological Review - PSYCHOL REV, 104, 749-791. https://doi.org/10.
1037//0033-295X.104.4.749

Seymour, T. L. (2022a). EPICpy documentation. In GitHub.io Documentation Site. GitHub.
https://travisseymour.github.io/EPICpyDocs/

Seymour, T. L. (2022b). EPICpy: A python interface for the EPIC computational cognitive
architecture. In GitHub repository. GitHub. https://github.com /travisseymour/EPICpy

Seymour, T. L., & Schumacher, E. (2009). Electromyographic evidence for response conflict
in the exclude recognition task. Cognitive, Affective & Behavioral Neuroscience, 9, 71-82.
https://doi.org/10.3758 /CABN.9.1.71

Vallat, R. (2018). Pingouin: Statistics in python. Journal of Open Source Software, 3(31),
1026. https://doi.org/10.21105/joss.01026

Zhang, Y., & Hornof, A. (2014). Understanding multitasking through parallelized strategy
exploration and individualized cognitive modeling. Conference on Human Factors in
Computing Systems - Proceedings. https://doi.org/10.1145/2556288.2557351

Seymour. (2022). EPICpy: A Python Interface for EPIC Computational Cognitive Modeling. Journal of Open Source Software, 7(76), 4533. 6
https://doi.org/10.21105/joss.04533.


https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://doi.org/10.1111/tops.12406
https://github.com/dekieras/EPIC
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1109/PyHPC.2016.008
https://doi.org/10.1080/09541440042000250
https://doi.org/10.1037/0033-295X.104.1.3
https://doi.org/10.1037//0033-295X.104.4.749
https://doi.org/10.1037//0033-295X.104.4.749
https://travisseymour.github.io/EPICpyDocs/
https://github.com/travisseymour/EPICpy
https://doi.org/10.3758/CABN.9.1.71
https://doi.org/10.21105/joss.01026
https://doi.org/10.1145/2556288.2557351
https://doi.org/10.21105/joss.04533

	Summary
	Current Approach Using EPICapp
	Previous Research Using EPIC via EPICapp
	Statement of Need
	A New Approach Using EPICpy
	Limitations
	Acknowledgements
	References

