
villager: A framework for designing and executing
agent-based models in R
Thomas Thelen ∗1, Marcus Thomson †1, Gerardo Aldana‡2, and Toni
Gonzalez§3

1 National Center for Ecological Analysis and Synthesis 2 College of Creative Studies, University of
California, Santa Barbara 3 Department of Anthropology, University of California, Santa Barbara

DOI: 10.21105/joss.04562

Software
• Review
• Repository
• Archive

Editor: Marcos Vital
Reviewers:

• @chrisaberson
• @brunomontezano
• @thodson-usgs

Submitted: 03 May 2022
Published: 10 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Villager is an agent-based modeling framework: it prescribes a convention and interface for
modelers to create and run agent-based models (ABM). The framework is aimed at researchers
in the social sciences who are focused on modeling human populations. The key features of
villager are:

1. Scalability: villager makes extensive use of the R6 class system (Chang, 2020), enabling
the power of reference semantics without the hurdles of manual memory management.
This enabled an architecture design where user-supplied functions are run within the
framework. The reference semantics also enable cheaper memory operations by allowing
for the mutation of agents in-place rather than costly copy semantics.

2. Extensibility: villager exposes a number of classes that can be extended by domain
scientists to provide flexibility in experiment design. The extended classes can be
“plugged” into the villager framework and run seamlessly.

Together, these two features allow researchers to design ABMs with flexible requirements-both
functionally and computationally.

Statement of need
Agent based modeling has found use in an increasing number of applications ranging from
market dynamics, animal behavior, and population studies (DeAngelis & Diaz, 2019). There
are only a few agent-based modeling systems available for researchers using R, a popular
language among social scientists. In some cases researchers must bootstrap their own ABM
systems due to lack of available packaging that provides flexible modeling. The most popular
R ABM frameworks include RNetLogo and SpaDES. Although RNetLogo is powerful, it acts
as an interface to the NetLogo software. This requires Java and pipes NetLogo syntax to
the Java process rather than using native R to describe system dynamics (Thiele & Grimm,
2010). SpaDES supports agent-based modeling however, its primary use is for Discrete Event
Simulations (McIntire et al., 2022). Villager differentiates itself from these two by being R
native and specifically designed for flexible ABM simulations.

∗Co-first author
†Co-first author
‡Co-first author
§Co-first author

Thelen et al. (2022). villager: A framework for designing and executing agent-based models in R. Journal of Open Source Software, 7(79), 4562.
https://doi.org/10.21105/joss.04562.

1

https://orcid.org/0000-0002-1756-2128
https://orcid.org/0000-0002-5693-0245
https://doi.org/10.21105/joss.04562
https://github.com/openjournals/joss-reviews/issues/4562
https://github.com/zizroc/villager
https://doi.org/10.5281/zenodo.6972383
https://marcosvital.github.io/
https://orcid.org/0000-0003-0829-7374
https://github.com/chrisaberson
https://github.com/brunomontezano
https://github.com/thodson-usgs
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04562

Functionality and design

Modular
One of the main design goals was to keep the framework components separated in a modular
fashion for long term maintainability to allow framework additions in the future. An additional
goal was to present the smaller components to modelers in a way that allows for them to
extend each part of the framework to their needs.

Extensible
Villager is made up from a few core classes, shown in Table 1 below. Base classes are provided
to contain basic functionality and are designed to be extended by modelers.

Class Role When to Subclass
agent A single agent with typical

properties for human agents
such as name, age, and sex.

When agents need to have
additional properties defined
for more context, such as
dietary preferences, weight,
and food production
restrictions.

resource An abstract thing that an
agent can possess. It has a
name and quantity.

When resources need to have
more complex attributes such
as expiration dates or
possession histories.

data_writer Responsible for managing the
serialization of simulation
data.

To connect with additional
data sources or file formats.

Table 1: A summary of the classes that users can extend.

The agent class provides all of the main properties for individual agents. Because it’s unlikely
that the included properties will fit every researchers’ needs, this class can be subclassed to
include any number of properties ranging from simple constructs like personal wealth to more
advanced ideas such as memory and emotional state.

The resource class is an abstract thing that a agent possesses. The base model only includes
information about the name of the resource and the associated quantity. Modelers can extend
this class with additional properties such as expiration date, date acquired, or previous owners.

By subclassing the data_writer class, users have the ability to control how and where their
model data is stored. Storage locations and formats can range from remote databases and
local files such as CSV, SQLite, or Microsoft Excel spreadsheets.

Usage
A simulation consists of three parts: an initial condition that defines the initial state, models
that are run at each timestep, and an interface to the simulation that define sthe experiment
duration.

Initial Conditions
Initial conditions are defined by creating a function, defining the state inside of it, and attaching
it to a village. Because the function is executed before any time steps, it sets the state at t=0.
The initial condition function requires the following parameters.

Thelen et al. (2022). villager: A framework for designing and executing agent-based models in R. Journal of Open Source Software, 7(79), 4562.
https://doi.org/10.21105/joss.04562.

2

https://doi.org/10.21105/joss.04562

1. current_state: A mutable copy of the state representing the current time step.
2. model_data: User supplied data that persists through the simulation.
3. agent_mgr: An object that manages the agent with convenience functions for retrieval

and creation.
4. resource_mgr: An object that manages the resources with convenience functions for

retrieval and creation.

For example, an initial condition of a population with three agents

1. A mother
2. A father
3. A daughter

initial_condition <- function(current_state, model_data, agent_mgr, resource_mgr) {

mother <- villager::agent$new(first_name=”Kirsten”, last_name=”Taylor”,

age=9125, profession=”Fisher”)

father <- villager::agent$new(first_name=”Joshua”, last_name=”Thompson”,

age=7300, profession=”Laborer”)

daughter <- villager::agent$new(first_name=”Mariylyyn”, last_name=”Thompson”,

age=1022, profession=”None”)

daughter$mother_id <- mother$identifier

daughter$father_id <- father$identifier

Connect the mother and father

agent_mgr$connect_agents(mother, father)

Add them to the manager

agent_mgr$add_agent(mother)

agent_mgr$add_agent(father)

agent_mgr$add_agent(daughter)

}

Models
Models are functions that contain code that’s executed at each time step. Similar to initial
conditions, models require the following parameters.

1. current_state: A mutable copy of the state representing the current time step.
2. previous_sate: An immutable copy of the previous state.
3. model_data: User supplied data that persists through the simulation.
4. agent_mgr: An object that manages the agent which has convenience functions for

retrieval and creation.
5. resource_mgr: An object that manages the resources which has convenience functions

for retrieval and creation.

Consider a model that prints the current step and increases the age of each agent by 1 at each
time step and sets their profession to Farmer when they reach the age of 4383.

inc_age <- function(current_state, previous_state, model_data, agent_mgr, resource_mgr) {

print(paste(”Time step :”, current_state$step))

for (agent in agent_mgr$get_living_agents()) {

agent$age <- agent$age+1

if (agent$age >= 4383 && agent$profession != ”Farmer”) {

print(”Setting the profession to Farmer”)

agent$profession <- ”Farmer”

}

}

}

Thelen et al. (2022). villager: A framework for designing and executing agent-based models in R. Journal of Open Source Software, 7(79), 4562.
https://doi.org/10.21105/joss.04562.

3

https://doi.org/10.21105/joss.04562

Simulation
Initial conditions and models make up the heart of the simulation. Villager aggregates these
into village objects. The simulation object contains any number of villages inside. The example
below uses the initial condition and model provided above to create a simulation that runs for
100 time steps. Because the agent behavior is scoped to a village, multiple villages may be
defined-each having different agent dynamics.

small_population <- villager::village$new(”Family Group”, initial_condition, inc_age)

simulator <- villager::simulation$new(100, list(small_population))

simulator$run_model()

Dependencies
Villager only depends on a few dependencies for core functionality.

Package Use
readr (Wickham & Hester,
2020)

Writing simulation states to
disk.

uuid (Urbanek & Ts’o, 2020) Generating unique agent
identifiers.

R6 (Chang, 2020) All villager classes are R6,
allowing users to use
reference semantics with
models.

References
Chang, W. (2020). R6: Encapsulated classes with reference semantics. https://CRAN.

R-project.org/package=R6

DeAngelis, D. L., & Diaz, S. G. (2019). Decision-making in agent-based modeling: A
current review and future prospectus. Frontiers in Ecology and Evolution, 6. https:
//doi.org/10.3389/fevo.2018.00237

McIntire, E., Chubaty, A., Luo, Y., Bauduin, S., Cumming, S., Marchal, J., & j7git. (2022).
PredictiveEcology/SpaDES: v2.0.8 (Version v2.0.8) [Computer software]. Zenodo. https:
//doi.org/10.5281/zenodo.6116101

Thiele, J. C., & Grimm, V. (2010). NetLogo meets R: Linking agent-based models with a
toolbox for their analysis. Environmental Modelling & Software, 25(8), 972–974. https:
//doi.org/10.1016/j.envsoft.2010.02.008

Urbanek, S., & Ts’o, T. (2020). uuid: Tools for generating and handling of UUIDs. https:
//CRAN.R-project.org/package=uuid

Wickham, H., & Hester, J. (2020). readr: Read rectangular text data. https://CRAN.R-project.
org/package=readr

Thelen et al. (2022). villager: A framework for designing and executing agent-based models in R. Journal of Open Source Software, 7(79), 4562.
https://doi.org/10.21105/joss.04562.

4

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://doi.org/10.3389/fevo.2018.00237
https://doi.org/10.3389/fevo.2018.00237
https://doi.org/10.5281/zenodo.6116101
https://doi.org/10.5281/zenodo.6116101
https://doi.org/10.1016/j.envsoft.2010.02.008
https://doi.org/10.1016/j.envsoft.2010.02.008
https://CRAN.R-project.org/package=uuid
https://CRAN.R-project.org/package=uuid
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=readr
https://doi.org/10.21105/joss.04562

	Summary
	Statement of need
	Functionality and design
	Modular
	Extensible

	Usage
	Initial Conditions
	Models
	Simulation

	Dependencies
	References

