
PyMSM: Python package for Competing Risks and
Multi-State models for Survival Data
Hagai Rossman ∗1,2, Ayya Keshet †1,2, and Malka Gorfine 3¶

1 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel 2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 3
Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel ¶ Corresponding
author

DOI: 10.21105/joss.04566

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @CamDavidsonPilon
• @stefanocoretta

Submitted: 23 May 2022
Published: 09 October 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Multi-state survival data are common, and can be used to describe trajectories in diverse
applications such as a patient’s health progression through disease states, pickups during the
workday of a taxi driver, or a website browsing trajectory to name a few. When faced with
such data, a researcher or clinician might seek to characterize the possible transitions between
states, their occurrence probabilities, or to predict the trajectory of future observations given
various baseline and time-varying individual covariates (features). By fitting a multi-state
model, we can learn the hazard for each specific transition, which would later be used to
predict future paths. Predicting paths can be used at a single individual level, for example
predicting how long a cancer patient will be relapse-free given his current health status, or at
what probability will a patient end a trajectory at any of the possible states. At the population
level paths predictions can be used, for example, to estimate how many patients which arrive at
the emergency-room will need to be admitted, given their covariates. Moreover, their expected
hospitalization duration can also be inferred, and provide planners with anticipated patients
load.

Statement of need
PyMSM is a Python package for fitting multi-state models, with a simple API which allows
user-defined models, predictions at a single or population sample level, and various statistical
summaries and figures. Features of this software include:

• Fitting competing risks and multi-state models based on various types of survival analysis
(time-to-event) such as Cox proportional hazards models or machine learning models,
while taking into account right censoring, competing events, recurrent events, left
truncation, and time-dependent covariates. The number of states in the model, and the
possible transitions between them will be determined by the user, as well as the number
of competing risks when fitting a competing risks model.

• Running Monte-Carlo simulations (in parallel computation) for paths emitted by the
trained model and extracting various summary statistics and plots.

• Loading or configuring a pre-defined multi-state model and generating simulated multi-
state survival data in terms of random paths, which can be highly useful as a research
tool.

∗Co-first author
†Co-first author

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

1

https://orcid.org/0000-0002-5613-8004
https://orcid.org/0000-0002-1841-7918
https://orcid.org/0000-0002-1577-6624
https://doi.org/10.21105/joss.04566
https://github.com/openjournals/joss-reviews/issues/4566
https://github.com/hrossman/pymsm
https://doi.org/10.5281/zenodo.7140849
https://www.linkedin.com/in/fortinbras/
https://orcid.org/0000-0001-5215-101X
https://github.com/CamDavidsonPilon
https://github.com/stefanocoretta
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04566

• Modularity and compatibility for different time-to-event models such as Survival Forests
and other custom ML models provided by the user.

The package is designed to allow modular usage by both experienced researchers and non-expert
users. In addition to fitting a multi-state model for a given data-set, PyMSM allows the user to
simulate trajectories, thus creating a multi-state survival data-set, from a predefined model.
This could be a valuable research tool, both for sharing sensitive simulated individual data
and as a tool for any downstream task which needs individual trajectories. To the authors
best knowledge, this is the first open-source multi-state model tool that allows fitting of such
models while also dealing with important concepts such as right censoring, competing events,
recurrent events, left truncation, and time-dependent covariates.

Usage examples
This project is based on methods first introduced during 2020 for predicting national COVID-19
hospitalizations in Israel. Important health policy applications based on these methods were
built and used by government policymakers throughout the pandemic. For example, help assess
hospital resource utilization (Roimi et al., 2021), and associations between high hospital load
and excess deaths (Rossman et al., 2021). A similar R version of this package is available
in Roimi et. al. 2021, yet this is the first Python version to be released as an open-source
package containing extended features and use cases. Other usage examples are provided in
the software package docs such as breast cancer state transitions (Rotterdam dataset - see
Figure 1), AIDS competing-risk data, disease-stage data from the European Society for Blood
and Marrow Transplantation (EBMT) and COVID-19 national hospitalizations.

Figure 1: A multi-state model of the Rotterdam breast-cancer data, 2790 observations. Numbers next to
arrows indicate number of observed transitions. Graph automatically created by PyMSM after defining a
data-set.

The PyMSM package
A brief overview of the package functionality is described below. Detailed explanations of the
API, along with four full usage examples on real data are available in the package documentation
at https://hrossman.github.io/pymsm/.

Model fitting
Fitting a multi-state model to a data-set requires only a few simple steps:

• Preparing a data-set in one of two formats.

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

2

https://doi.org/10.21105/joss.04566

• Defining a function for updating time-dependent covariates.

• Defining covariates’ columns.

• Defining terminal states.

• Defining a minimum number of data transitions needed to fit a transition.

Once all the above is done, the user can fit a multi-state model to the data-set, and use it for
downstream analyses.

Path sampling
Using the previously fitted multi-state model, the user can sample paths using Monte-Carlo
simulations. Given covariates, initial state and time, next states and times spent at each
future state are sequentially sampled via the entire estimated multi-state model. The process
concludes when the path arrives at a terminal state or the number of transitions exceeds a
pre-defined maximum. Once a large number of paths have been sampled for each observation,
the user can explore summary statistics such as the probability of being in any of the states or
the median time spent in each state.

Custom fitters
PyMSM works with Cox proportional hazards models by default using the lifelines (Davidson-
Pilon, 2019) Python library, but also allows configuration of custom event-specific fitters.
EventSpecificFitter class is an abstract class which defines the API and needs to be subclassed
by the user.

Some custom fitters are available off-the-shelf such as survival trees (Ishwaran et al., 2008)
through the scikit-survival Python package (Pölsterl, 2020).

Simulating Multi-state Survival Data
Using a pre-loaded or a pre-defined multi-state model, PyMSM provides an API to generate
simulated data of random trajectories. Creating a simulated multi-state paths data-set could
serve as a useful research tool in cases where data sharing is limited due to privacy limitations,
or as a generation tool for any downstream task which requires individual trajectories.

Models and Methods
In this section we give an overview of the multi-state models and methods underlying the
statistical analysis and computations performed in PyMSM.

Introduction
The description of the content of PyMSM is easier to digest under a given setting. Thus, to set
the stage, we adopt the multi-state model of Roimi (Roimi et al., 2021). Specifically, assume
a multi-state model consists of four states 𝐴,𝐵,𝐶,𝐷 and six possible transitions:

𝐴 → 𝐵 𝐴 → 𝐶 𝐴 → 𝐷 𝐵 → 𝐴 𝐵 → 𝐷 𝐶 → 𝐴 .

Each transition is characterized by a transition-specific hazard function, also known as a
cause-specific hazard function,

𝜆𝐴,𝐵(𝑡|𝑍) 𝜆𝐴,𝐶(𝑡|𝑍) 𝜆𝐴,𝐷(𝑡|𝑍) 𝜆𝐵,𝐴(𝑡|𝑍) 𝜆𝐵,𝐷(𝑡|𝑍) 𝜆𝐶,𝐴(𝑡|𝑍)

for 𝑡 > 0 and a 𝑍 vector of covariates. Although 𝑍 is shared by the six models above, it does
not imply that identical covariates must be used in these models. For example, in Cox models

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

3

https://doi.org/10.21105/joss.04566

with transition-dependent regression coefficient vectors, one can set any specific coefficient to
zero for excluding the corresponding covariate.

Let 𝐽𝐶 and 𝐽𝑁 denote the current and next states, respectively, and 𝑇 denote the transition
time. Assume the journey of an observation in the system described by the multi-state model
starts at state 𝑗∗ with a vector of baseline covariates 𝑊. Let 𝑍(𝑡) be a time-dependent vector
of covariates, where

𝑍(𝑇)𝑇 = (𝑊𝑇,𝑊(𝑇)𝑇)

and 𝑊(𝑡) is a time-dependent vector of covariates known at the entrance to the new state.
Let 𝐾𝑗∗ be the set of possible states that can be reached directly from state 𝑗∗. Then, the
conditional probability of transition 𝑗∗ → 𝑗, 𝑗 ∈ 𝐾𝑗∗ , by time 𝑡 given 𝑍(0) = 𝑍 is given by

Pr(𝑇 ≤ 𝑡, 𝐽𝑁 = 𝑗|𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍) = ∫
𝑡

0
𝜆𝑗∗,𝑗(𝑢|𝑍) exp

⎧{
⎨{⎩
−

|𝐾𝑗∗ |

∑
𝑘=1

Λ𝑗∗,𝑘(𝑢 − |𝑍)
⎫}
⎬}⎭

𝑑𝑢 ,

where 𝑢− is a time just prior to 𝑢, |𝐾𝑗∗ | is the cardinality of 𝐾𝑗∗ and Λ𝑗,𝑘(𝑡|𝑍) =
∫𝑡
0
𝜆𝑗,𝑘(𝑢|𝑍)𝑑𝑢 is the cumulative hazard function. In our example, if the first state 𝑗∗ = 𝐴,

𝐾𝑗∗ = {𝐵,𝐶,𝐷}, and

Pr(𝑇 ≤ 𝑡, 𝐽𝑁 = 𝑗|𝐽𝐶 = 𝐴,𝑍(0) = 𝑍) =

∫
𝑡

0
𝜆𝐴,𝑗(𝑢|𝑍) exp{−Λ𝐴,𝐵(𝑢 − |𝑍) − Λ𝐴,𝐶(𝑢 − |𝑍) − Λ𝐴,𝐷(𝑢 − |𝑍)} 𝑑𝑢 .

The marginal probability of transition 𝑗∗ → 𝑗 is given by

Pr(𝐽𝑁 = 𝑗|𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍) = ∫
∞

0
𝜆𝑗∗,𝑗(𝑢|𝑍) exp

⎧{
⎨{⎩
−

|𝐾𝑗∗ |

∑
𝑘=1

Λ𝑗∗,𝑘(𝑢 − |𝑍)
⎫}
⎬}⎭

𝑑𝑢 ,

and the probability of transition time less than 𝑡 given a transition 𝑗∗ → 𝑗

Pr(𝑇 ≤ 𝑡|𝐽𝑁 = 𝑗, 𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍) =
∫𝑡
0
𝜆𝑗∗,𝑗(𝑢|𝑍) exp{−∑|𝐾𝑗∗ |

𝑘=1 Λ𝑗∗,𝑘(𝑢 − |𝑍)} 𝑑𝑢

∫∞
0

𝜆𝑗∗,𝑗(𝑢|𝑍) exp{−∑|𝐾𝑗∗ |
𝑘=1 Λ𝑗∗,𝑘(𝑢 − |𝑍)} 𝑑𝑢

.

Now assume an observation entered state 𝑗′ at time 𝑡′ > 0 with 𝑍(𝑡′). Then, the probability
of 𝑗′ → 𝑗 by time 𝑡 is given by

Pr(𝑇 ≤ 𝑡, 𝐽𝑁 = 𝑗|𝐽𝐶 = 𝑗′, 𝑍(𝑡′) = 𝑍) = ∫
𝑡

𝑡′
𝜆𝑗′,𝑗(𝑢|𝑍) exp

⎧{
⎨{⎩
−

|𝐾𝑗′ |

∑
𝑘=1

Λ𝑗′,𝑘(𝑢 − |𝑍)
⎫}
⎬}⎭

𝑑𝑢 ,

and

Pr(𝑇 ≤ 𝑡|𝐽𝑁 = 𝑗, 𝐽𝐶 = 𝑗′, 𝑍(𝑡′) = 𝑍) =
∫𝑡
𝑡′
𝜆𝑗′,𝑗(𝑢|𝑍) exp{−∑|𝐾𝑗′ |

𝑘=1 Λ𝑗′,𝑘(𝑢 − |𝑍)} 𝑑𝑢

∫∞
𝑡′

𝜆𝑗′,𝑗(𝑢|𝑍) exp{−∑|𝐾𝑗′ |
𝑘=1 Λ𝑗′,𝑘(𝑢 − |𝑍)} 𝑑𝑢

.

For all of the above, set the main multi-state model components required for prediction, as
will be explained in the following sections.

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

4

https://doi.org/10.21105/joss.04566

Estimation
Cox transition-specific hazard models

The estimation procedure for the hazard functions that define the multi-state model can
be chosen by the user. For example, if Cox models are adopted, where each transition
𝑗 → 𝑗′ consists of transition-specific unspecified baseline hazard function 𝜆0𝑗,𝑗′(⋅) and a
transition-specific vector of regression coefficients 𝛽𝑗,𝑗′ , i.e.,

𝜆𝑗,𝑗′(𝑡|𝑍) = 𝜆0𝑗,𝑗′(𝑡) exp(𝑍𝑇𝛽𝑗,𝑗′) ,

the estimation procedure is straightforward. Specifically, under transition-specific semi-
parametric Cox models, we can easily deal with right censoring and competing events based
on the approach of Andersen & Keiding (Andersen et al., 1991). Namely, maximization of
the partial likelihood function in terms of all the involved Cox models is done by maximiz-
ing the partial-likelihood of each transition separately, and temporarily treating competing
events as censoring. Thus, we use the standard partial-likelihood estimators of 𝛽𝑗,𝑗′ (Klein &
Moeschberger, 2006) and Breslow estimator of Λ0𝑗,𝑗′(𝑡) = ∫𝑡

0
𝜆0𝑗,𝑗′(𝑢)𝑑𝑢 (Breslow, 1972).

Another important issue is left truncation which occurs at each transition that is not the
origin state of the subject’s path. Bias due to left truncation is eliminated by using the
well-known risk-set correction (Klein & Moeschberger, 2006). Recurrent events, which occurs
when subjects visit the same state multiple times, are accommodated by the robust standard
errors (Andersen & Gill, 1982).

Based on the estimates of the regression coefficients and the cumulative baseline hazard
functions, all the distribution functions above can be estimated by replacing the integrals
with sums over the observed failure times, replacing any unknown parameter by its estimator.
Specifically, let 𝜏𝑗∗,𝑗 be the largest observed event time of transition 𝑗∗ → 𝑗. Then,

P̂r(𝐽𝑁 = 𝑗|𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍)

= ∑
𝑡𝑚≤𝜏𝑗∗,𝑗

exp (̂𝛽𝑇
𝑗∗,𝑗𝑍) �̂�0𝑗∗,𝑗(𝑡𝑚) exp

⎧{
⎨{⎩
−

|𝐾𝑗∗ |

∑
𝑘=1

Λ̂0𝑗∗,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗∗,𝑘𝑍)

⎫}
⎬}⎭

,
(1)

P̂r(𝑇 ≤ 𝑡|𝐽𝑁 = 𝑗′, 𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍)

=
∑𝑡𝑚≤𝑡 exp (

̂𝛽𝑇
𝑗∗,𝑗′𝑍) �̂�0𝑗∗,𝑗′(𝑡𝑚) exp{−∑|𝐾𝑗∗ |

𝑘=1 Λ̂0𝑗∗,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗∗𝑘𝑍)}

∑𝑡𝑚≤𝜏𝑗∗,𝑗′
exp (̂𝛽𝑇

𝑗∗,𝑗′𝑍) �̂�0𝑗∗,𝑗′(𝑡𝑚) exp{−∑𝐾𝑗∗

𝑘=1 Λ̂0𝑗∗,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗∗,𝑘𝑍)}

,
(2)

and finally, given a new ̆𝑗, the estimated probability of staying at state 𝑗′ less than or equal 𝑡
time units is given by

P̂r(𝑇 ≤ 𝑡|𝐽𝑁 = ̆𝑗, 𝐽𝐶 = 𝑗′, 𝑍(𝑡′) = 𝑍)

=
∑𝑡′<𝑡𝑚≤𝑡 exp(

̂𝛽𝑇
𝑗′, ̆𝑗𝑍) �̂�0𝑗′, ̆𝑗(𝑡𝑚) exp{−∑|𝐾𝑗′ |

𝑘=1 Λ̂0𝑗′,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗′,𝑘𝑍)}

∑𝑡′<𝑡𝑚≤𝜏𝑗′, ̆𝑗
exp(̂𝛽𝑇

𝑗′, ̆𝑗𝑍) �̂�0𝑗′, ̆𝑗(𝑡𝑚) exp{−∑𝐾𝑗′

𝑘=1 Λ̂0𝑗′,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗′,𝑘𝑍)}

.

(3)

Other transition-specific models

The user can define other survival models and estimation procedures, such as accelerated
failure time models, random survival forests (Ishwaran et al., 2008) etc, for each transition, as
explained in section Custom Fitters above.

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

5

https://doi.org/10.21105/joss.04566

Prediction - Monte-Carlo Simulation
Based on the multi-state model, we reconstruct the complete distribution of the path for a
new observation, given the observed covariates 𝑊. Based on the reconstructed distribution we
estimate the probability of visiting each state, the total length of stay at each state and the
total length of stay in the entire system.

The above quantities can be predicted before entering the system and also during the stay at
one of the systems’ states, while correctly taking into account the accumulated time already
spent in the system and 𝑍(⋅).

We reconstruct the distribution of the path for a new observation by Monte-Carlo simulation.
Assume the starting state (provided by the user) is 𝑗∗. Then, the next state 𝐽𝑁 is sampled
based on the discrete conditional probabilities

𝑝𝑗|𝑗∗,𝑍 = P̂r(𝐽𝑁 = 𝑗|𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍)

∑|𝐾𝑗∗ |
𝑗′=1 P̂r(𝐽𝑁 = 𝑗′|𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍)

,

where 𝑗 ∈ 𝐾𝑗∗ . Once we sampled the next state, denoted by 𝑗′, the time to be spent at state
𝑗∗ is sampled based on

P̂r(𝑇 ≤ 𝑡|𝐽𝑁 = 𝑗′, 𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍) .

This is done by sampling 𝑈 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1], equating

𝑈 = P̂r(𝑇 ≤ 𝑡|𝐽𝑁 = 𝑗′, 𝐽𝐶 = 𝑗∗, 𝑍(0) = 𝑍)

and solving for 𝑡. Denote the sampled time by 𝑡′ and update 𝑍(𝑡′). In case 𝑗′ is a terminal
state, the sampling path ends here. Otherwise, the current state is updated to 𝐽𝐶 = 𝑗′, and
the following state is sampled by 𝑝𝑗|𝑗′,𝑍(𝑡′), 𝑗 = 1 ∈ 𝐾𝑗′ ,

𝑝𝑗|𝑗′,𝑍 =
∑𝑡′<𝑡𝑚≤𝜏𝑗′,𝑗

exp (̂𝛽𝑇
𝑗′,𝑗𝑍) �̂�0𝑗′,𝑗(𝑡𝑚) exp{−∑|𝐾𝑗′ |

𝑘=1 Λ̂0𝑗′,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗′,𝑘𝑍)}

∑|𝐾𝑗′ |
̃𝑗=1

∑𝑡′<𝑡𝑚≤𝜏𝑗′, ̃𝑗
exp(̂𝛽𝑇

𝑗′, ̃𝑗
𝑍) �̂�0𝑗′, ̃𝑗(𝑡𝑚) exp{−∑|𝐾𝑗′ |

𝑘=1 Λ̂0𝑗′,𝑘(𝑡𝑚−1) exp (̂𝛽𝑇
𝑗′,𝑘𝑍)}

.

Generating Random Multistate Survival Data
PyMSM allows the user to pre-define a multi-state model. For example, for Cox models, the
user should provide transition-specific baseline hazards, vectors of regression coefficients, and
a time-varying covariates update function if needed. After providing this information, the user
can then simulate trajectories, thus creating a new multi-state data-set which may be valuable
for a variety of purposes.

Acknowledgemnts
This project is based on Roimi 2021. We thank Jonathan Somer, Asaf Ben Arie, Rom Gutman,
Tomer Meir and Uri Shalit for their work on the model, R code and valuable discussions. The
work was partially supported by the Israel Science Foundation (ISF) grant number 767/21 and
by a grant from the Tel Aviv University Center for AI and Data Science (TAD).

References
Andersen, & Gill. (1982). Cox’s regression model for counting processes: A large sample study.

The Annals of Statistics, 10(4). https://doi.org/10.1214/aos/1176345976

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

6

https://doi.org/10.1214/aos/1176345976
https://doi.org/10.21105/joss.04566

Andersen, Hansen, & Keiding. (1991). Non-and semi-parametric estimation of transition
probabilities from censored observation of a non-homogeneous markov process. Scandinavian
Journal of Statistics, 18(2), 153–167. https://www.jstor.org/stable/4616198

Breslow, N. (1972). Disussion of regression models and life-tables by cox, dr. J. Roy. Statist.
Assoc., B, 34, 216–217.

Davidson-Pilon, C. (2019). Lifelines: Survival analysis in python. Journal of Open Source
Software, 4(40), 1317. https://doi.org/10.21105/joss.01317

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival
forests. The Annals of Applied Statistics, 2(3). https://doi.org/10.1214/08-aoas169

Klein, J. P., & Moeschberger, M. L. (2006). Survival analysis: Techniques for censored and
truncated data. https://doi.org/10.1111/j.1541-0420.2006.00589_9.x

Pölsterl, S. (2020). Scikit-survival: A library for time-to-event analysis built on top of scikit-
learn. Journal of Machine Learning Research, 21(212), 1–6. http://jmlr.org/papers/v21/
20-729.html

Roimi, M., Gutman, R., Somer, J., Arie, A. B., Calman, I., Bar-Lavie, Y., Gelbshtein, U.,
Liverant-Taub, S., Ziv, A., Eytan, D., Gorfine, M., & Shalit, U. (2021). Development and
validation of a machine learning model predicting illness trajectory and hospital utilization
of COVID-19 patients: A nationwide study. Journal of the American Medical Informatics
Association, 28(6), 1188–1196. https://doi.org/10.1093/jamia/ocab005

Rossman, H., Meir, T., Somer, J., Shilo, S., Gutman, R., Arie, A. B., Segal, E., Shalit, U.,
& Gorfine, M. (2021). Hospital load and increased COVID-19 related mortality in israel.
Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22214-z

Rossman et al. (2022). PyMSM: Python package for Competing Risks and Multi-State models for Survival Data. Journal of Open Source Software,
7(78), 4566. https://doi.org/10.21105/joss.04566.

7

https://www.jstor.org/stable/4616198
https://doi.org/10.21105/joss.01317
https://doi.org/10.1214/08-aoas169
https://doi.org/10.1111/j.1541-0420.2006.00589_9.x
http://jmlr.org/papers/v21/20-729.html
http://jmlr.org/papers/v21/20-729.html
https://doi.org/10.1093/jamia/ocab005
https://doi.org/10.1038/s41467-021-22214-z
https://doi.org/10.21105/joss.04566

	Summary
	Statement of need
	Usage examples
	The PyMSM package
	Model fitting
	Path sampling
	Custom fitters
	Simulating Multi-state Survival Data

	Models and Methods
	Introduction
	Estimation
	Cox transition-specific hazard models
	Other transition-specific models

	Prediction - Monte-Carlo Simulation
	Generating Random Multistate Survival Data

	Acknowledgemnts
	References

