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Summary
Continuous quasi-monochromatic gravitational-waves are expected to be emitted from non-
axisymmetric rapidly rotating neutron stars (see, e.g., Riles, 2022 for a review). There are
thought to be on the order of 108 − 109 neutron stars within the Milky Way (Sartore et al.,
2010). At the time of writing, around 3000 such stars, have been found through electromagnetic
(primarily radio) observations of their highly regular pulsing profiles (Manchester et al., 2005).
These are known as pulsars. A proportion of these pulsars with rotation frequencies ≳ 10Hz
make enticing targets for the current and future generation of ground-based gravitational-wave
observatories such as LIGO, Virgo and KAGRA (B. P. Abbott et al., 2019). The detection
of gravitational-waves from such a source would reveal information on the size of any non-
axisymmetry, or more colloquially a “mountain”, on the star. This in turn provides valuable
and novel information on neutron star matter and structure (see, e.g., Lasky, 2015).

Detecting the very weak gravitational-wave signal from a pulsar requires the coherent integration
of long (months-to-years) gravitational-wave data sets from multiple detectors. CWInPy
implements an analysis pipeline enabling the user to search for and characterise these signals. It
implements the preprocessing of the time-domain strain, ℎ(𝑡), measured by gravitational-wave
detectors for a user-provided set of pulsars (defined through Tempo2-style parameter files,
Hobbs et al., 2006; Hobbs & Edwards, 2006); this entails heterodyning the data with the
expected signal phase evolution, followed by aggressive filtering and down-sampling of the data
(Dupuis & Woan, 2005). These much compressed datasets are then used to perform Bayesian
inference on the unknown signal parameters, including the gravitational-wave amplitude.

CWInPy can be used to perform this full pipeline or implement the data preprocessing stages and
inferences stages separately. These are all accessible via convenient command line executables
(making use of configuration files) or, equivalently, through a Python API. The pipelines
provided by CWInPy can perform analyses on an individual machine, but the amount of data
being processed generally requires that the preprocessing be parallelised over multiple machines.
Therefore, CWInPy will create jobs that can be submitted over a computing cluster running
the HTCondor job management system (Thain et al., 2005) via the htcondor package. These
can also be run over the Open Science Grid (Pordes et al., 2007) using open gravitational-wave
data provided via the Gravitational-wave Open Science Center (GWOSC) (R. Abbott, Abbott,
et al., 2021; Vallisneri et al., 2015).

For the heterodyne preprocessing stage, CWInPy makes use of algorithms written in C within
LALSuite (LIGO Scientific Collaboration, 2018) to calculate the phase evolution of each pulsar,
which must account for the slowly changing rotation frequency and include Doppler and
relativistic effects related to the position and motion of the detector with respect to the pulsar.
These are accessible within Python through a SWIG interface to LALSuite (Wette, 2020).
The Bayesian inference stage makes use of the bilby package (Ashton et al., 2019), which
provides a convenient interface to a wide variety of packages for using the Markov Chain
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Monte Carlo [MCMC; see, e.g., Sharma (2017) for a review of MCMC with particular reference
to astronomy] or nested sampling algorithms (see, e.g., Ashton et al., 2022; Buchner, 2021
for reviews). By default, CWInPy uses the dynesty package (Speagle, 2020) for inference
using nested sampling, producing both posterior probability distributions for the parameters of
interest and the Bayesian evidence for the data given the signal model.

Statement of need
CWInPy is designed to supersede the current analysis pipeline, known as lalapps_knope

(Pitkin et al., 2017), largely based on executables written in C, which has been used for several
searches in LIGO and Virgo data (B. P. Abbott et al., 2017, 2019; R. Abbott et al., 2020; R.
Abbott, Abe, et al., 2021). The reasons behind CWInPy’s development, and its enhancements
over existing software, include:

• the Python API allows easy access to the full range of functionality from data preprocessing
to source parameter estimation, with greater ability to control various aspects of the
analysis;

• the parallelisation of the analysis for multiple pulsars over long observing runs has been
changed to improve its efficiency and robustness;

• the intermediate preprocessed data products (the heterodyned data files) have their own
HeterodynedData class, based on a GWPy TimeSeries (Macleod et al., 2021), and can
be written to and read from HDF5 files; this class includes full information on the data
provenance, useful plotting routines in both time- and frequency-domain, and access to
data statistics;

• the use of bilby for the signal parameter estimation allows easy access to a wide range
of packages for Bayesian inference;

• the pipeline can be run over the Open Science Grid, allowing a wider range of computing
resources to be used;

• the pipeline can make use of open gravitational-wave data provided over CVMFS from
the Gravitational-wave Open Science Center (GWOSC) (R. Abbott, Abbott, et al., 2021;
Vallisneri et al., 2015);

• it provides tools to generate simulated signals injected in real or fake data for individual
sources, or for user specified populations of sources;

• it provides tools to perform hierarchical inference on the underlying ellipticity distribution
of a population of pulsars (Pitkin et al., 2018);

• it provides tools for determining the significance of a recovered signal using the sky-shifting
method (Isi et al., 2020);

• the pulsar phase evolution can be calculated using the standard pulsar timing package
Tempo2 (Hobbs et al., 2006) via the libstempo Python package (Vallisneri, 2020) in
addition to being able to use the independent routines within LALSuite (LIGO Scientific
Collaboration, 2018).

Validation
To validate CWInPy, extensive testing against previous codes has been performed and is
provided with the documentation. CWInPy has been used to successfully extract simulated
signals directly added into the LIGO data (Biwer et al., 2017) as well as multiple signals
simulated via software.

The inference of source parameters has been validated through the use of simulation-based
calibration (Talts et al., 2018), with the posterior probability distributions shown to provide
well-calibrated (Dawid, 1982) credible intervals.

As evidence for this consistency, Figure 1 shows the posterior probability distributions—plotted
using matplotlib (Hunter, 2007), and corner.py (Foreman-Mackey, 2016), via an interface
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with PESummary, (Hoy & Raymond, 2021)—for the four unknown parameters of a simulated
gravitational-wave signal from a pulsar. The figure compares the posterior samples ex-
tracted using CWInPy (with the dynesty sampler) with those calculated (again with CWInPy)
over a uniform grid in the parameters space and those produced by the previously used
lalapps_pulsar_parameter_estimation_nested code (Pitkin et al., 2017). Consistent pos-
teriors, and also Bayesian odds values comparing the evidence for the signal model versus the
data containing pure noise, are found.

Figure 1: The posterior probability distributions for the parameters of a simulated gravitational-wave
signal from a pulsar injected into Gaussian noise.

In Figure 2 CWInPy has been used to heterodyne simulated data containing a gravitational-
wave signal and an insignificant amount of noise (to show the the method does not corrupt
the signal in any way). The simulated data has been generated using software that is largely
independent of CWInPy. The solid lines show the heterodyned time series as produced by
CWInPy, whereas the dashed lines show the theoretical expectation for the heterodyned signal,
which provide a very good match.
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Figure 2: The real and imaginary components of the heterodyned time series for a simulated signal
generated using the heterodyne pipeline in CWInPy.

Usage
The main pipelines provided by CWInPy are accessible using command line executables that
require a configuration file. The full pipeline, which must be run as an HTCondor directed
acyclic graph (DAG), can be run with the cwinpy_knope_pipeline executable. The heterodyne
preprocessing stage can be run using cwinpy_heterodyne or, if running for long stretches of
data and multiple pulsars, using a HTCondor DAG via cwinpy_heterodyne_pipeline. The
latter should be used for most practical purposes, while the former is mainly useful for testing
purposes. The parameter estimation stage can be run using cwinpy_pe or, if running for
multiple pulsars, using an HTCondor DAG via cwinpy_pe_pipeline. Full details of all the
required configuration file settings are given in the documentation.

Quick setup
Both the cwinpy_knope_pipeline and the cwinpy_heterodyne_pipeline executables have
several command line arguments that can be used for quickly setting up analyses using open
data from GWOSC. These rely on the user having access to a computer, or cluster of computers,
with HTCondor installed and CVMFS set up with access to the data. To run the analysis the
user just needs to have Tempo2-style pulsar ephemeris files for any pulsars they wish to search
for. If one had an ephemeris file for, e.g., PSR J0740+6620, called J0740+6620.par, then the
pipeline could be run over all data from the first observing run of Advanced LIGO (O1) (R.
Abbott, Abbott, et al., 2021), using

$ cwinpy_knope_pipeline \

--run O1 \

--pulsar J0740+6620.par \

--output /home/usr/analysis

where /home/usr/analysis can be substituted for the required final location of the files output
by the analysis.

If you do not have access to a pulsar ephemeris file, an ephemeris from the ATNF Pulsar
Catalogue (Manchester et al., 2005) can be used by instead just specifying the name of the
pulsar (you have to trust that the ephemeris provides a coherent timing solution over the
gravitational-wave data period). The ephemeris is extracted from the catalogue using psrqpy
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(Pitkin, 2018). For example, to search for PSR J0737-3039A using the ATNF Pulsar Catalogue
data in LIGO data from the second observing run, one could use:

$ cwinpy_knope_pipeline \

--run O2 \

--pulsar J0737-3039A \

--output /home/usr/analysis

In both the above cases the --pulsar command can be given multiple times to input multiple
pulsars. With these “quick setup” options there is no further control over the pipeline, so
default parameters are used in all cases. If more control is required then using a configuration
file is highly recommended.

The quick setup can be used to analyse all the signal hardware injections for each observation
run (Biwer et al., 2017) by supplying the --hwinj command instead of --pulsar.

Availability, documentation and development
CWInPy is installable under Linux and MacOS using pip via PyPI or using conda via conda-
forge. Full documentation of the executables and Python API is available on Read the Docs.
Development is currently performed in the git.ligo.org/cwinpy/cwinpy git repository, which is
openly viewable, but for which write access is only available within the LIGO-Virgo-KAGRA
collaborations. The master branch is also mirrored on GitHub. Feedback, bug reports, or
development suggestions are welcome and can be contributed via Github issues, the discussion
forum, or via email.
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