
MARTINI: The Little Match and Replace Tool for
Automatic Code Rewriting
Alister Johnson 1¶, Camille Coti2, Allen D. Malony1, and Johannes
Doerfert 3

1 University of Oregon, Eugene, OR, USA 2 Université du Québec à Montréal, Montréal, QC, Canada
3 Argonne National Laboratory, Lemont, IL, USA ¶ Corresponding author

DOI: 10.21105/joss.04590

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @wimvanderbauwhede
• @tokuso2

Submitted: 06 July 2022
Published: 13 August 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

In partnership with

JOSS Special Issue for Euro-Par
2022 Artefacts
10.1007/978-3-031-12597-3_2

Summary
Rewriting code for cleanliness, API changes, and new programming models is a common, yet
time-consuming task. Localized or syntax-based changes are often mechanical and can be
automated with text-based tools, like Unix’s sed. However, non-localized or semantic-based
changes require specialized tools that usually come with complex, hard-coded rules that
require expertise in compilers. This means existing techniques for code rewriting are either too
simple for complex tasks or too complex to be customized by non-expert users; in either case,
developers are often forced to manually update their code instead.

This work presents MARTINI, a new approach to code rewriting built on the Clang compiler,
which exposes complex and semantic-driven rewrite capabilities to users in a simple and natural
way. Rewrite rules are expressed as a pair of parameterized “before-and-after” code snippets in
the source language, one to describe what to match and one to describe what the replacement
looks like. Through this novel and user-friendly interface, programmers can automate and
customize complex code changes which require a deep understanding of the language without
any knowledge of compiler internals.

Statement of Need
Once rewrites span code ranges or require semantic reasoning, text-based tooling is inadequate
or requires complex implementations (for example, tracking balanced parentheses with extended
regular expressions). Traditionally, this is where compiler-based tooling comes in (Quinlan &
Liao, 2011). The compiler’s frontend has parsing and semantic analysis capabilities that allow
more complete understanding of the source code and, consequently, semantic-based rewriting
over most arbitrary code ranges. However, developing and customizing such tooling requires
a deep understanding of the compiler and its rewriting infrastructure (if one exists), which
restricts the developer pool drastically (Murai et al., 2018; Takizawa et al., 2014). Previously,
as long as the number of rewrites was small and customization was not required, hard-coded
rules in a compiler-based tool were sufficient. Today, however, language standards are changing
more rapidly and new parallel programming models are constantly being developed.

Programmers who wish to keep their applications up-to-date must use a streamlined refactoring
process (Wright et al., 2013). For instance, testing a new programming model is an intriguing
and often difficult proposition; parts might be a simple matter of replacing one API with
another, but most often complex changes have to be made as well, especially if the new
model has any kind of parallelism. Other rewriting tasks, such as adding instrumentation or
error-checking asserts, are just as time-consuming and important. These changes often follow
patterns, however, and if programmers are able to capture those patterns in some way, these
tasks seem like they should be able to be automated.

Johnson et al. (2022). MARTINI: The Little Match and Replace Tool for Automatic Code Rewriting. Journal of Open Source Software, 7(76),
4590. https://doi.org/10.21105/joss.04590.

1

https://orcid.org/0000-0002-7199-8221
https://orcid.org/0000-0001-7870-8963
https://doi.org/10.21105/joss.04590
https://github.com/openjournals/joss-reviews/issues/4590
https://github.com/ajohnson-uoregon/clang-rewrite-only/
https://doi.org/https://doi.org/10.6084/m9.figshare.20483967.v1
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/wimvanderbauwhede
https://github.com/tokuso2
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-12597-3_2
https://doi.org/10.21105/joss.04590


Example

As an example, consider the “simple” rewriting task done by the clang-tidy rule “modernize-
use-nullptr”. This rule replaces constants, like NULL and 0, assigned to pointer variables with
the C++11 nullptr keyword, which is both safer and more readable. Figure 1 illustrates the
changes clang-tidy can perform. The first replacement, where a is initialized to 0, could be
done with a text-based tool, like sed, although constructing a generic regular expression to
match arbitrary types and variable names could be tricky. However, the other two replacements
are difficult if not impossible to handle without semantic context. The physical distance
between the type of the variable and the 0-literal can cross file boundaries, and most languages
allow for various other complexities. This semantic context is out of reach for purely text-based
tools. Being built on the Clang compiler, MARTINI has the context needed to emulate most
of clang-tidy’s “modernize-use-nullptr” rule using just the three matcher-replacer pairs in
Figure 2. While clang-tidy’s rule is over 100 lines of complex code that requires extensive
knowledge of Clang internals, MARTINI can be understood by the average programmer.

Figure 1: Example to showcase the “modernize-use-nullptr” clang-tidy rewrite rule, which replaces
0-literal pointers with nullptr.

Related Work

Most previous work in automatic code rewriting relies on compiler experts directly working
with the code’s abstract syntax tree (AST). ClangMR (Wright et al., 2013) and the Clang
Transformer library (Clang Developers, n.d.) are similar code rewriting tools implemented
in Clang, but both of these use AST matchers (with a few additions) as a user interface.
MARTINI is designed to provide similar functionality but be usable by non-compiler experts.

Other code rewriting frameworks include the ROSE compiler (Quinlan & Liao, 2011), Xevolver
(Takizawa et al., 2014) (built on ROSE), and the Omni source-to-source compiler (Murai et
al., 2018). These tools provide more low-level interfaces than ours, and thus more precise
control over rewriting, but at the cost of requiring users to be compiler experts. Neither of
these are very user-friendly, as users have to directly describe AST manipulations and use
syntax specific to each tool. MARTINI, on the other hand, only requires knowledge of C++
and the semantics of a few new attributes.

The most similar work to our own is Nobrainer (V. Savchenko et al., 2019; V. V. Savchenko et
al., 2020), which also uses C/C++ code snippets and AST matchers to match application
code and describe how to modify it, and inspired some of our user interface. As the Nobrainer
project has existed for longer than ours, it supports more of the C++ standard. However,
Nobrainer uses more restrictive and specialized syntax and generally enforces more restrictions
on transformations than we do. They do this to ensure their transformations are (type-)safe,
but we opted to take a more lenient approach. For example, it’s easy to imagine cases
where users may want to change the type of an expression, such as testing multiple precision
arithmetic, but this is nearly impossible in Nobrainer. Nobrainer’s design philosophy is to make
matchers as specific as possible and force users to add generality - they assume all names in a
matcher are literals unless they are specified as parameters and do their best to enforce safety.

Johnson et al. (2022). MARTINI: The Little Match and Replace Tool for Automatic Code Rewriting. Journal of Open Source Software, 7(76),
4590. https://doi.org/10.21105/joss.04590.

2

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
https://doi.org/10.21105/joss.04590


Our philosophy is almost precisely the opposite: our matchers are as general as possible and
users must add specificity, e.g., with literals, and we allow users to define any transformations
they wish with minimal restrictions on safety. Nobrainer is also, sadly, not open-source.

Figure 2: MARTINI’s equivalent to clang-tidy’s “modernize-use-nullptr” rule, using abbreviated
MARTINI syntax.

References
Clang Developers. (n.d.). clang::tooling::Transformer class reference. https://clang.llvm.org/

doxygen/classclang/_1/_1tooling/_1/_1Transformer.html

Murai, H., Sato, M., Nakao, M., & Lee, J. (2018). Metaprogramming framework for ex-
isting HPC languages based on the Omni compiler infrastructure. International Sympo-
sium on Computing and Networking Workshops (CANDARW). https://doi.org/10.1109/
CANDARW.2018.00054

Quinlan, D., & Liao, C. (2011). The ROSE source-to-source compiler infrastructure. Cetus
Users and Compiler Infrastructure Workshop @PACT.

Savchenko, V. V., Sorokin, K. S., Bronshtein, I. E., Volkov, A. S., Kachanov, V. V., Pankratenko,
G. A., Ermakov, M. K., Markov, S. I., Spiridonov, A. V., & Aleksandrov, I. V. (2020).
NOBRAINER: A tool for example-based transformation of C/C++ code. Programming
and Computer Software, 46(5). https://doi.org/10.1134/S0361768820040052

Savchenko, V., Sorokin, K., Pankratenko, G., Markov, S., Spiridonov, A., Alexandrov, I.,
Volkov, A., & Sun, K. (2019). Nobrainer: An example-driven framework for C/C++

Johnson et al. (2022). MARTINI: The Little Match and Replace Tool for Automatic Code Rewriting. Journal of Open Source Software, 7(76),
4590. https://doi.org/10.21105/joss.04590.

3

https://clang.llvm.org/doxygen/classclang/_1/_1tooling/_1/_1Transformer.html
https://clang.llvm.org/doxygen/classclang/_1/_1tooling/_1/_1Transformer.html
https://doi.org/10.1109/CANDARW.2018.00054
https://doi.org/10.1109/CANDARW.2018.00054
https://doi.org/10.1134/S0361768820040052
https://doi.org/10.21105/joss.04590


code transformations. In N. Bjørner, I. Virbitskaite, & A. Voronkov (Eds.), Perspec-
tives of system informatics. Springer International Publishing. https://doi.org/10.1007/
978-3-030-37487-7/_12

Takizawa, H., Hirasawa, S., Hayashi, Y., Egawa, R., & Kobayashi, H. (2014). Xevolver: An
XML-based code translation framework for supporting HPC application migration. 2014
21st International Conference on High Performance Computing (HiPC). https://doi.org/
10.1109/HiPC.2014.7116902

Wright, H. K., Jasper, D., Klimek, M., Carruth, C., & Wan, Z. (2013). Large-scale automated
refactoring using ClangMR. International Conference on Software Maintenance. https:
//doi.org/10.1109/ICSM.2013.93

Johnson et al. (2022). MARTINI: The Little Match and Replace Tool for Automatic Code Rewriting. Journal of Open Source Software, 7(76),
4590. https://doi.org/10.21105/joss.04590.

4

https://doi.org/10.1007/978-3-030-37487-7/_12
https://doi.org/10.1007/978-3-030-37487-7/_12
https://doi.org/10.1109/HiPC.2014.7116902
https://doi.org/10.1109/HiPC.2014.7116902
https://doi.org/10.1109/ICSM.2013.93
https://doi.org/10.1109/ICSM.2013.93
https://doi.org/10.21105/joss.04590

	Summary
	Statement of Need
	Example
	Related Work


	References

