
SimSGamE : Scheduling simulator for modern game
engines
Mustapha Regragui 1, Baptiste Coye 1,2, Laercio Lima Pilla 1,3,
Raymond Namyst 1,4,5, and Denis Barthou 1,5,6

1 Inria Bordeaux, France 2 Ubisoft Bordeaux, France 3 CNRS, France 4 Univ. Bordeaux, France 5
Labri, France 6 Bordeaux INP, France

DOI: 10.21105/joss.04592

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @azoitl
• @hwloidl

Submitted: 29 June 2022
Published: 12 August 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

In partnership with

JOSS Special Issue for Euro-Par
2022 Artefacts
10.1007/978-3-031-12597-3_7

Summary
The video game market is valued at over USD$100 billion (Mordor Intelligence, n.d.) and
impacts computing both at the hardware and software levels. It produces and sells tens of
millions of video games and consoles yearly. The variety of devices running games is very large,
from personal computers, consoles and smartphones to Cloud gaming servers. In order to
develop these games more easily and allow them to be ported to different platforms, developers
use a key software component called the game engine.

Game engines are at the heart of the design of modern video games. They handle most of the
components of the game, and allow the generation of each frame (image) displayed on the
player screen. They aim to keep a high frame rate (30 to 60 frames per seconds) by scheduling
the tasks required to complete such computations.

Each task represents a functionality written by a given team at a given moment in the lifetime
of the game engine. These tasks have precedence constraints that must be respected to ensure
the execution’s correctness, which is organised as a directed acyclic graph (DAG), and they
have varied execution times. Scheduling such tasks is NP-hard and has not been studied in
detail in the context of game engines. A better understanding of this problem could lead to
optimizations for the benefit of players and developers.

Our code is focused on modeling a modern game engine and answering the following three
questions:

• Can state-of-the-art scheduling strategies improve the performance of the game engine?
• Can changes in the scheduling mechanism reduce the gap between produced schedules

and the critical path?
• Can small changes to the task graph lead to performance improvements?

Statement of need
SimSGamE was created in order to study the scheduling of game engines. Given the lack of
studies on this problem, our efforts have been dedicated to finding and adapting algorithms
and heuristics proposed in other contexts. We find that there is value in bringing to light new
applications and knowledge about existing algorithms.

The software simulates the behavior of game engines using two files:

• a dependency file describing links between tasks and the structure of the game engine to
be simulated, and

• a tasks file describing key values for tasks (steps, mean, minimum, maximum, std_dev)
for both moderated and intensive use of the engine.

Regragui et al. (2022). SimSGamE : Scheduling simulator for modern game engines. Journal of Open Source Software, 7(76), 4592.
https://doi.org/10.21105/joss.04592.

1

https://orcid.org/0000-0001-6316-8079
https://orcid.org/0000-0002-7619-4492
https://orcid.org/0000-0003-0997-586X
https://orcid.org/0000-0001-7734-1258
https://orcid.org/0000-0001-7110-2037
https://doi.org/10.21105/joss.04592
https://github.com/openjournals/joss-reviews/issues/4592
https://github.com/baptisteCoye/SimSGame
https://doi.org/10.5281/zenodo.6984771
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/azoitl
https://github.com/hwloidl
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-12597-3_7
https://doi.org/10.21105/joss.04592

Using these two files, SimSGamE generates randomized tasks composing a frame respecting
the statistical repartition and their dependencies (generation may be seeded in order to enable
direct comparisons). The simulation also mimics different load evolution (from moderate use
0% to intensive 100%) and evaluates multiple scheduling techniques to estimate frame span
and metrics, giving information regarding heuristics efficiencies.

The simulation is composed of 200 generated frames with the load parameter starting at 0
(0%) and increasing linearly up to 1 (100%) in the 101st frame and then decreasing linearly
until it reaches 0.01 (1%) for the last frame. This provides a gradual change of load while
also generating a load peak. In order to have a better understanding of possible optimizations
and their impact on the game engine, we also added the ability to sort subtasks (parallel for
situations) by non-increasing order of execution time. We consider this is a feasible change
to the game engine because it does not affect the actual execution of the subtasks nor the
dependencies in the task graph.

The number of available CPUs can be changed to fit the device to emulate or anticipate the
effects of external interference but communication and locks are not taken into account at the
moment.

The algorithms implemented in the code are:

• FIFO: First In First Out
• LPT: Longest Processing Time First
• SPT: Shortest Processing Time First
• SLPT: LPT at a subtask level (input method name: SLRT)
• SSPT: SPT at a subtask level (input method name: SSRT)
• HRRN: Highest Response Ratio Next
• WT: Longest Waiting Time First
• HLF: Hu’s Level First with unitary processing time of each task
• HLFET: HLF with estimated times (input method name: Hu)
• CG: Coffman-Graham’s Algorithm (input method name: Coffman)
• DCP: Dynamic Critical Path Priority (input method name: Priority)

In addition, the following algorithms are implemented but not used in automatic tests:

• WL: Weighted Length algorithm
• LFF: Latest Finished First
• MostScussors: Most successors First
• TOPO: topological order
• NEH: Nawaz, Enscore, Ham algorithm
• ACO: Ant Colony Optimization
• Infinity: CPU amount is infinite

Metrics

• SF: slowest frame (maximum frame execution time)
• DF: number of delayed frames (with 16.667 ms as the due date)
• CS: cumulative slowdown (with 16.667 ms as the due date)

State of the field
Scheduling is a well known issue that has been widely studied. However, given the lack
of studies on this particular scheduling problem, our efforts have been dedicated to finding
and adapting algorithms and heuristics proposed in other contexts. Video games work as
soft real-time interactive simulations (Gregory, 2018). However, Real-Time scheduling often
considers reccuring independent tasks where earliest deadline first (EDF) heuristics are employed
(Nascimento & Lima, 2021). Nonetheless, the game engine contains dependent tasks with
an entire task graph to be computed at each frame and all tasks share the same due date,

Regragui et al. (2022). SimSGamE : Scheduling simulator for modern game engines. Journal of Open Source Software, 7(76), 4592.
https://doi.org/10.21105/joss.04592.

2

https://doi.org/10.21105/joss.04592

obstructing the use of EDF heuristics. Moreover, parallel task scheduling usually models tasks
using multiple resources simultaneously, but the tasks follow a fork-join model internally. An
algorithm called DynFed was proposed to schedule parallel tasks with dependencies in real
time systems by Dai et al. (2021), but it focuses on periodic, independent tasks whose parallel
subtasks have dependencies, while our problem contains periodic tasks with dependencies
whose parallel subtasks are independant. The Game Task Scheduler developed by Intel (Alfieri,
2019) reflects these tasks and subtasks organisation but is developped as a tool to be integrated
in a game engine and not as a benchmark system that allows testing different heurisitcs and
evaluating performance.

Acknowledgements
We acknowledge contributions from Cédric Dumondelle and Hervé Hubele during the genesis
of this project.

References
Alfieri, B. (2019). Intel games task scheduler. https://github.com/GameTechDev/

GTS-GamesTaskScheduler.

Dai, G., Mohaqeqi, M., & Yi, W. (2021). Timing-anomaly free dynamic scheduling of
periodic DAG tasks with non-preemptive nodes. 2021 IEEE 27th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), 119–128.
https://doi.org/10.1109/RTCSA52859.2021.00022

Gregory, J. (2018). Game engine architecture (3rd ed.). Taylor; Francis Ltd.

Mordor Intelligence. (n.d.). Global Gaming Market - Growth, Trends, Covid-19 Impact,
and Forecasts (2022–2027). https://www.mordorintelligence.com/industry-reports/
global-gaming-market.

Nascimento, F. M. S., & Lima, G. (2021). Effectively scheduling hard and soft real-time tasks on
multiprocessors. 2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 210–222. https://doi.org/10.1109/RTAS52030.2021.00025

Regragui et al. (2022). SimSGamE : Scheduling simulator for modern game engines. Journal of Open Source Software, 7(76), 4592.
https://doi.org/10.21105/joss.04592.

3

https://github.com/GameTechDev/GTS-GamesTaskScheduler
https://github.com/GameTechDev/GTS-GamesTaskScheduler
https://doi.org/10.1109/RTCSA52859.2021.00022
https://www.mordorintelligence.com/industry-reports/global-gaming-market
https://www.mordorintelligence.com/industry-reports/global-gaming-market
https://doi.org/10.1109/RTAS52030.2021.00025
https://doi.org/10.21105/joss.04592

	Summary
	Statement of need
	State of the field
	Acknowledgements
	References

