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Summary
The video game market is valued at over USD$100 billion (Mordor Intelligence, n.d.) and
impacts computing both at the hardware and software levels. It produces and sells tens of
millions of video games and consoles yearly. The variety of devices running games is very large,
from personal computers, consoles and smartphones to Cloud gaming servers. In order to
develop these games more easily and allow them to be ported to different platforms, developers
use a key software component called the game engine.

Game engines are at the heart of the design of modern video games. They handle most of the
components of the game, and allow the generation of each frame (image) displayed on the
player screen. They aim to keep a high frame rate (30 to 60 frames per seconds) by scheduling
the tasks required to complete such computations.

Each task represents a functionality written by a given team at a given moment in the lifetime
of the game engine. These tasks have precedence constraints that must be respected to ensure
the execution’s correctness, which is organised as a directed acyclic graph (DAG), and they
have varied execution times. Scheduling such tasks is NP-hard and has not been studied in
detail in the context of game engines. A better understanding of this problem could lead to
optimizations for the benefit of players and developers.

Our code is focused on modeling a modern game engine and answering the following three
questions:

• Can state-of-the-art scheduling strategies improve the performance of the game engine?
• Can changes in the scheduling mechanism reduce the gap between produced schedules

and the critical path?
• Can small changes to the task graph lead to performance improvements?

Statement of need
SimSGamE was created in order to study the scheduling of game engines. Given the lack of
studies on this problem, our efforts have been dedicated to finding and adapting algorithms
and heuristics proposed in other contexts. We find that there is value in bringing to light new
applications and knowledge about existing algorithms.

The software simulates the behavior of game engines using two files:

• a dependency file describing links between tasks and the structure of the game engine to
be simulated, and

• a tasks file describing key values for tasks (steps, mean, minimum, maximum, std_dev)
for both moderated and intensive use of the engine.
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Using these two files, SimSGamE generates randomized tasks composing a frame respecting
the statistical repartition and their dependencies (generation may be seeded in order to enable
direct comparisons). The simulation also mimics different load evolution (from moderate use
0% to intensive 100%) and evaluates multiple scheduling techniques to estimate frame span
and metrics, giving information regarding heuristics efficiencies.

The simulation is composed of 200 generated frames with the load parameter starting at 0
(0%) and increasing linearly up to 1 (100%) in the 101st frame and then decreasing linearly
until it reaches 0.01 (1%) for the last frame. This provides a gradual change of load while
also generating a load peak. In order to have a better understanding of possible optimizations
and their impact on the game engine, we also added the ability to sort subtasks (parallel for
situations) by non-increasing order of execution time. We consider this is a feasible change
to the game engine because it does not affect the actual execution of the subtasks nor the
dependencies in the task graph.

The number of available CPUs can be changed to fit the device to emulate or anticipate the
effects of external interference but communication and locks are not taken into account at the
moment.

The algorithms implemented in the code are:

• FIFO: First In First Out
• LPT: Longest Processing Time First
• SPT: Shortest Processing Time First
• SLPT: LPT at a subtask level (input method name: SLRT)
• SSPT: SPT at a subtask level (input method name: SSRT)
• HRRN: Highest Response Ratio Next
• WT: Longest Waiting Time First
• HLF: Hu’s Level First with unitary processing time of each task
• HLFET: HLF with estimated times (input method name: Hu)
• CG: Coffman-Graham’s Algorithm (input method name: Coffman)
• DCP: Dynamic Critical Path Priority (input method name: Priority)

In addition, the following algorithms are implemented but not used in automatic tests:

• WL: Weighted Length algorithm
• LFF: Latest Finished First
• MostScussors: Most successors First
• TOPO: topological order
• NEH: Nawaz, Enscore, Ham algorithm
• ACO: Ant Colony Optimization
• Infinity: CPU amount is infinite

Metrics

• SF: slowest frame (maximum frame execution time)
• DF: number of delayed frames (with 16.667 ms as the due date)
• CS: cumulative slowdown (with 16.667 ms as the due date)

State of the field
Scheduling is a well known issue that has been widely studied. However, given the lack
of studies on this particular scheduling problem, our efforts have been dedicated to finding
and adapting algorithms and heuristics proposed in other contexts. Video games work as
soft real-time interactive simulations (Gregory, 2018). However, Real-Time scheduling often
considers reccuring independent tasks where earliest deadline first (EDF) heuristics are employed
(Nascimento & Lima, 2021). Nonetheless, the game engine contains dependent tasks with
an entire task graph to be computed at each frame and all tasks share the same due date,
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obstructing the use of EDF heuristics. Moreover, parallel task scheduling usually models tasks
using multiple resources simultaneously, but the tasks follow a fork-join model internally. An
algorithm called DynFed was proposed to schedule parallel tasks with dependencies in real
time systems by Dai et al. (2021), but it focuses on periodic, independent tasks whose parallel
subtasks have dependencies, while our problem contains periodic tasks with dependencies
whose parallel subtasks are independant. The Game Task Scheduler developed by Intel (Alfieri,
2019) reflects these tasks and subtasks organisation but is developped as a tool to be integrated
in a game engine and not as a benchmark system that allows testing different heurisitcs and
evaluating performance.
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