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Summary

The fseval Python package allows benchmarking Feature Selection and Feature Ranking
algorithms on a large scale, and facilitates the comparison of multiple algorithms in a systematic
way. In particular, fseval enables users to run experiments in parallel and distributed over
multiple machines, and export the results to an SQL database. The execution of an experiment
can be fully determined by a configuration file, which means the experiment results can be
reproduced easily, given only the configuration file. fseval has high test coverage, continuous
integration, and rich documentation. The package is open source and can be installed through
PyPl. The source code is available at: https://github.com/dunnkers/fseval.

Statement of Need

Feature Selection (FS) and Feature Ranking (FR) are extensively researched topics within
machine learning (Guyon & Elisseeff, 2003; Venkatesh & Anuradha, 2019). FS methods
determine subsets of relevant features in a dataset, whereas FR methods rank the features in
a dataset relative to each other in terms of their relevance. When a new FS or FR method is
developed, a benchmarking scheme is necessary to empirically validate its effectiveness. Often,
the benchmark is conducted as follows: features are ranked by importance, then the predictive
quality of the feature subsets containing the top ranked features is evaluated using a validation
estimator. Some studies let the competing FS or FR algorithms pick out a fixed number of top
k features and validate the performance of that feature subset (Bradley & Mangasarian, 1998;
Roffo et al., 2015; Zhao & Liu, 2007), whilst others evaluate multiple subsets of increasing
cardinality containing the highest ranked features (Almuallim & Dietterich, 1991; Bennasar et
al., 2015; Gu et al., 2012; Kira & Rendell, 1992; Peng et al., 2005; Wojtas & Chen, 2020). FS
algorithms that only make a binary prediction on which features to keep, are always evaluated
in the former way.

There is a clear case for performing Feature Selection, as it has been shown to improve
classification performance in many tasks, especially those with a large number of features and
limited observations. In those applications, it is difficult to determine which FS method is
suitable in the general case. Therefore, large empirical comparisons of several FS methods and
classifiers are routinely performed. For instance, in microarray data (Cilia et al., 2019), medical
imaging (Sun et al., 2019; Tohka et al., 2016), and text classification (Kou et al., 2020; Liu et
al., 2017). Therefore, it is valuable to find out emperically which FR- or FS method works
best. This requires running a benchmark to do so.

fseval is an open-source Python package that helps researchers perform such benchmarks
efficiently by eliminating the need for implementing benchmarking pipelines from scratch to
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test new methods. The pipeline only requires a well-defined configuration file to run - the rest
of the pipeline is automatically executed. Because the entire experiment setup is deterministic
and captured in a configuration file, results of any experiment can be reproduced given the
configuration file. This can be very convenient to researchers in order to prove the integrity of
their benchmarks.

To the best of our knowledge, there is only one package that aims to accomplish a similar
goal (featsel, (Reis et al., 2017)). Compared to this tool, fseval is easier to install and
use, has better documentation, and is better maintained. fseval also has more extensive
functionalities compared to featsel: with support for easily configurable and reproducible
pipeline configuration using either YAML or Python and distributed-processing support. Due
to the lack of functionality and the fact that the refered-to library is out-of-date, we consider
there to be a gap in the field, which our library aims to fill.

= The target audiences are researchers in the domains of Feature Selection and Feature
Ranking, as well as businesses that are looking for the best FR- or FS method to use for
their use case.

= The scope of fseval is limited to handle tabular datasets for the classification and
regression objectives.

Key Features

fseval is a flexible and unbiased framework which provides as much useful functionality as
possible. Most features are optional, and can be enabled or disabled according to what the
user deems fit. The aim of the package is to accommodate the most common benchmarking
settings and protocols that feature selection researchers use.

= Algorithm support. FR or FS algorithms that estimate the importance of features in
various ways are supported, including the following output attributes: (1) a FEATURE_IM-
PORTANCES__ vector in R, (2) a RANKING_ vector in Z and (3) a SUPPORT_ vector in B.
An estimator might support any combination of the output attributes. Once estimators
are fit there is the option to save a cached version.

= Dataset adapters. Datasets can be loaded from multiple sources using adapters. Users
can implement adapters themselves by implementing a given interface, or use a built-in
adapter class to load datasets from OpenML (Vanschoren et al., 2013). Adapters might
also be functions, which, for example, allow users to directly use the sklearn functions
make_classification or make_regression as adapters to create synthetic datasets.
Datasets might also define dataset feature importance ground truths, which can be used
to compute metrics in the scoring stage (Section ‘Scoring’).

= Built-in integrations. fseval allows exporting benchmark results directly to various
SQL databases using SQLAIchemy (Bayer, 2012), or to the Weights and Biases experi-
ment tracker platform (Biewald, 2020). Users can create custom metrics and perform
aggregations over the bootstrap results.

= Scalable and distributed computing. Besides that the process of running multiple
bootstraps can be distributed over the CPU, fseval also allows executing experiments
on SLURM clusters (Yoo et al., 2003) or on the cloud platform AWS. This is possible
because all configuration regarding the execution of the pipeline can be captured in a
configuration file.

= Reproducible experiments. Because the entire execution state of the pipeline can be
expressed in a single configuration file, it is easy to reproduce experiment results. Given
that a scientist uses estimates that are deterministic (e.g. by fixing a RANDOM_STATE
variable), others can reproduce the results, improving the scientific integrity of the work.
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The Pipeline

fseval executes a predefined sequence of steps, as can be seen in Figure 1.

YAML @hydra.main(

)

Python

cfg: Pipelineconfig fseval.run_pipeline(cfg: eConfig)

dataset: D.
cv:
resample: eCc : [—
ranker:
validator:

dataset . Benchmark
X Train set

X_train
y N
y_train

Test set
X_test

Benchmark

Bootstrap forevery b € {1, ..., cfg.n_bootstraps}

d) if cfg.ranker.estimates_feature_importances or
cfg.ranker.estimates_feature_ranking )

Validate for every k € cfg.all_features_to_select:

.SelectFromModel(
estimator=ranker, max_features=k, ...

c) if cfg.ranker.estimates_feature_support

Validate feature subset

X
[X = [z, ranker.support_] ||

Validato

Figure 1: A schematic of the benchmarking pipeline. The input of the pipeline is at all times a
PipelineConfig object, processed from YAML or Python by Hydra. After steps 1-6, steps a-d are
executed for both the fitting step and scoring step.

First, in step 1, the pipeline configuration is processed using Hydra (Yadan, 2019). Hydra is a
powerful tool for creating Command Line Interfaces in Python, allowing hierarchical represen-
tation of the configuration. Configuration can be defined in either YAML or Python files, or a
combination of the two. The top-level config is enforced to be of the PipelineConfig interface,
allowing Hydra to perform type-checking. The config is then passed to the run_pipeline
function in step 2. Then, after the dataset is loaded in step 3, the splits for cross validation are
determined in step 4. Each cross validation fold is executed in a separate run of the pipeline.
The training and testing subsets are then given to the fitting and scoring steps, steps 5 and 6,
respectively.

Fitting

In the fitting step, the Feature- Ranker or Selector and validation estimators are fit on the
given training set. The validation estimator is fit on all feature subsets that are desired to be
evaluated. For every bootstrap b € {1, ..., PipelineConfig.n_bootstraps}, a fit sequence is
run. The bootstraps can be distributed over CPUs by setting PipelineConfig.n_jobs > 1.
The fit process consists of the following steps.

(a) The dataset is resampled according to the PipelineConfig.resample config, using
random_state = b.

(b) The FR or FS algorithm is fit. Then, the estimator can be cached as a pickle file.

(c) If the ranker estimates SUPPORT_ (Feature Selection): The selected feature subset is
validated using the validation estimator.

(d) If the ranker estimates FEATURE_IMPORTANCES_ or RANKING_ (Feature Ranking) then
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every number in the list PipelineConfig.all_features_to_select is used to take the
k best features in the ranking, and fitting the validation estimator on the subset.

Scoring

After the estimators have been fit, a scoring step is executed on the test set. By default,
the validation estimator score function is triggered and its results are stored. Depending on
the estimator, this often means classification accuracy for classifiers and the R? score for
regressors. Besides the built-in metrics, users can install custom metrics.

To install custom metrics, programmatic hooks are available. This enables, for example, a
user aggregate over the various validated feature subsets and bootstrapped datasets. A user
could compute the average accuracy over all bootstraps, or compute various stability metrics
(Nogueira et al., 2018). Another example of a custom metric would be to compare the dataset
ground-truth feature importances to the estimated importances, which information would be
available when using synthetic datasets.

Conclusion and Future Work

fseval is a comprehensive and feature rich Python library for benchmarking Feature Ranking
and Feature Selection algorithms. It allows authors to focus on their empirical research instead
of having to implement another benchmarking pipeline - exploiting fseval's support for parallel
processing, distributed computing and export possibilities. fseval is open source and published
on the PyPi platform. Next steps are to include more built-in dataset adapters, metrics and
export possibilities.
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