The Journal of Open Source Software

DOI: 10.21105/joss.04611

Software
= Review @@
= Repository @
= Archive &7

Editor: Patrick Diehl &
Reviewers:

= @mcasl

= Qestefaniatalavera

Submitted: 11 July 2022
Published: 23 November 2022

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

fseval: A Benchmarking Framework for Feature
Selection and Feature Ranking Algorithms

Jeroen G. S. Overschie ®!, Ahmad Alsahaf ©2, and George Azzopardi® !

1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of
Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands 2 Department of Biomedical Sciences of
Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen,
The Netherlands

Summary

The fseval Python package allows benchmarking Feature Selection and Feature Ranking
algorithms on a large scale, and facilitates the comparison of multiple algorithms in a systematic
way. In particular, fseval enables users to run experiments in parallel and distributed over
multiple machines, and export the results to an SQL database. The execution of an experiment
can be fully determined by a configuration file, which means the experiment results can be
reproduced easily, given only the configuration file. fseval has high test coverage, continuous
integration, and rich documentation. The package is open source and can be installed through
PyPl. The source code is available at: https://github.com/dunnkers/fseval.

Statement of Need

Feature Selection (FS) and Feature Ranking (FR) are extensively researched topics within
machine learning (Guyon & Elisseeff, 2003; Venkatesh & Anuradha, 2019). FS methods
determine subsets of relevant features in a dataset, whereas FR methods rank the features in
a dataset relative to each other in terms of their relevance. When a new FS or FR method is
developed, a benchmarking scheme is necessary to empirically validate its effectiveness. Often,
the benchmark is conducted as follows: features are ranked by importance, then the predictive
quality of the feature subsets containing the top ranked features is evaluated using a validation
estimator. Some studies let the competing FS or FR algorithms pick out a fixed number of top
k features and validate the performance of that feature subset (Bradley & Mangasarian, 1998;
Roffo et al., 2015; Zhao & Liu, 2007), whilst others evaluate multiple subsets of increasing
cardinality containing the highest ranked features (Almuallim & Dietterich, 1991; Bennasar et
al., 2015; Gu et al., 2012; Kira & Rendell, 1992; Peng et al., 2005; Wojtas & Chen, 2020). FS
algorithms that only make a binary prediction on which features to keep, are always evaluated
in the former way.

There is a clear case for performing Feature Selection, as it has been shown to improve
classification performance in many tasks, especially those with a large number of features and
limited observations. In those applications, it is difficult to determine which FS method is
suitable in the general case. Therefore, large empirical comparisons of several FS methods and
classifiers are routinely performed. For instance, in microarray data (Cilia et al., 2019), medical
imaging (Sun et al., 2019; Tohka et al., 2016), and text classification (Kou et al., 2020; Liu et
al., 2017). Therefore, it is valuable to find out emperically which FR- or FS method works
best. This requires running a benchmark to do so.

fseval is an open-source Python package that helps researchers perform such benchmarks
efficiently by eliminating the need for implementing benchmarking pipelines from scratch to

Overschie et al. (2022). fseval: A Benchmarking Framework for Feature Selection and Feature Ranking Algorithms. Journal of Open Source 1
Software, 7(79), 4611. https://doi.org/10.21105/joss.04611.

https://orcid.org/0000-0003-3304-3800
https://orcid.org/0000-0002-0770-1390
https://orcid.org/0000-0001-6552-2596
https://doi.org/10.21105/joss.04611
https://github.com/openjournals/joss-reviews/issues/4611
https://github.com/dunnkers/fseval
https://doi.org/10.5281/zenodo.7343417
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/mcasl
https://github.com/estefaniatalavera
https://creativecommons.org/licenses/by/4.0/
https://github.com/dunnkers/fseval
https://doi.org/10.21105/joss.04611

The Journal of Open Source Software

test new methods. The pipeline only requires a well-defined configuration file to run - the rest
of the pipeline is automatically executed. Because the entire experiment setup is deterministic
and captured in a configuration file, results of any experiment can be reproduced given the
configuration file. This can be very convenient to researchers in order to prove the integrity of
their benchmarks.

To the best of our knowledge, there is only one package that aims to accomplish a similar
goal (featsel, (Reis et al., 2017)). Compared to this tool, fseval is easier to install and
use, has better documentation, and is better maintained. fseval also has more extensive
functionalities compared to featsel: with support for easily configurable and reproducible
pipeline configuration using either YAML or Python and distributed-processing support. Due
to the lack of functionality and the fact that the refered-to library is out-of-date, we consider
there to be a gap in the field, which our library aims to fill.

= The target audiences are researchers in the domains of Feature Selection and Feature
Ranking, as well as businesses that are looking for the best FR- or FS method to use for
their use case.

= The scope of fseval is limited to handle tabular datasets for the classification and
regression objectives.

Key Features

fseval is a flexible and unbiased framework which provides as much useful functionality as
possible. Most features are optional, and can be enabled or disabled according to what the
user deems fit. The aim of the package is to accommodate the most common benchmarking
settings and protocols that feature selection researchers use.

= Algorithm support. FR or FS algorithms that estimate the importance of features in
various ways are supported, including the following output attributes: (1) a FEATURE_IM-
PORTANCES__ vector in R, (2) a RANKING_ vector in Z and (3) a SUPPORT_ vector in B.
An estimator might support any combination of the output attributes. Once estimators
are fit there is the option to save a cached version.

= Dataset adapters. Datasets can be loaded from multiple sources using adapters. Users
can implement adapters themselves by implementing a given interface, or use a built-in
adapter class to load datasets from OpenML (Vanschoren et al., 2013). Adapters might
also be functions, which, for example, allow users to directly use the sklearn functions
make_classification or make_regression as adapters to create synthetic datasets.
Datasets might also define dataset feature importance ground truths, which can be used
to compute metrics in the scoring stage (Section ‘Scoring’).

= Built-in integrations. fseval allows exporting benchmark results directly to various
SQL databases using SQLAIchemy (Bayer, 2012), or to the Weights and Biases experi-
ment tracker platform (Biewald, 2020). Users can create custom metrics and perform
aggregations over the bootstrap results.

= Scalable and distributed computing. Besides that the process of running multiple
bootstraps can be distributed over the CPU, fseval also allows executing experiments
on SLURM clusters (Yoo et al., 2003) or on the cloud platform AWS. This is possible
because all configuration regarding the execution of the pipeline can be captured in a
configuration file.

= Reproducible experiments. Because the entire execution state of the pipeline can be
expressed in a single configuration file, it is easy to reproduce experiment results. Given
that a scientist uses estimates that are deterministic (e.g. by fixing a RANDOM_STATE
variable), others can reproduce the results, improving the scientific integrity of the work.

Overschie et al. (2022). fseval: A Benchmarking Framework for Feature Selection and Feature Ranking Algorithms. Journal of Open Source 2
Software, 7(79), 4611. https://doi.org/10.21105/joss.04611.

https://doi.org/10.21105/joss.04611

The Journal of Open Source Software

The Pipeline

fseval executes a predefined sequence of steps, as can be seen in Figure 1.

YAML @hydra.main(

)

Python

cfg: Pipelineconfig fseval.run_pipeline(cfg: eConfig)

dataset: D.
cv:
resample: eCc : [—
ranker:
validator:

dataset . Benchmark
X Train set

X_train
y N
y_train

Test set
X_test

Benchmark

Bootstrap forevery b € {1, ..., cfg.n_bootstraps}

d) if cfg.ranker.estimates_feature_importances or
cfg.ranker.estimates_feature_ranking)

Validate for every k € cfg.all_features_to_select:

.SelectFromModel(
estimator=ranker, max_features=k, ...

c) if cfg.ranker.estimates_feature_support

Validate feature subset

X
[X = [z, ranker.support_] ||

Validato

Figure 1: A schematic of the benchmarking pipeline. The input of the pipeline is at all times a
PipelineConfig object, processed from YAML or Python by Hydra. After steps 1-6, steps a-d are
executed for both the fitting step and scoring step.

First, in step 1, the pipeline configuration is processed using Hydra (Yadan, 2019). Hydra is a
powerful tool for creating Command Line Interfaces in Python, allowing hierarchical represen-
tation of the configuration. Configuration can be defined in either YAML or Python files, or a
combination of the two. The top-level config is enforced to be of the PipelineConfig interface,
allowing Hydra to perform type-checking. The config is then passed to the run_pipeline
function in step 2. Then, after the dataset is loaded in step 3, the splits for cross validation are
determined in step 4. Each cross validation fold is executed in a separate run of the pipeline.
The training and testing subsets are then given to the fitting and scoring steps, steps 5 and 6,
respectively.

Fitting

In the fitting step, the Feature- Ranker or Selector and validation estimators are fit on the
given training set. The validation estimator is fit on all feature subsets that are desired to be
evaluated. For every bootstrap b € {1, ..., PipelineConfig.n_bootstraps}, a fit sequence is
run. The bootstraps can be distributed over CPUs by setting PipelineConfig.n_jobs > 1.
The fit process consists of the following steps.

(a) The dataset is resampled according to the PipelineConfig.resample config, using
random_state = b.

(b) The FR or FS algorithm is fit. Then, the estimator can be cached as a pickle file.

(c) If the ranker estimates SUPPORT_ (Feature Selection): The selected feature subset is
validated using the validation estimator.

(d) If the ranker estimates FEATURE_IMPORTANCES_ or RANKING_ (Feature Ranking) then

Overschie et al. (2022). fseval: A Benchmarking Framework for Feature Selection and Feature Ranking Algorithms. Journal of Open Source 3
Software, 7(79), 4611. https://doi.org/10.21105/joss.04611.

https://doi.org/10.21105/joss.04611

The Journal of Open Source Software

every number in the list PipelineConfig.all_features_to_select is used to take the
k best features in the ranking, and fitting the validation estimator on the subset.

Scoring

After the estimators have been fit, a scoring step is executed on the test set. By default,
the validation estimator score function is triggered and its results are stored. Depending on
the estimator, this often means classification accuracy for classifiers and the R? score for
regressors. Besides the built-in metrics, users can install custom metrics.

To install custom metrics, programmatic hooks are available. This enables, for example, a
user aggregate over the various validated feature subsets and bootstrapped datasets. A user
could compute the average accuracy over all bootstraps, or compute various stability metrics
(Nogueira et al., 2018). Another example of a custom metric would be to compare the dataset
ground-truth feature importances to the estimated importances, which information would be
available when using synthetic datasets.

Conclusion and Future Work

fseval is a comprehensive and feature rich Python library for benchmarking Feature Ranking
and Feature Selection algorithms. It allows authors to focus on their empirical research instead
of having to implement another benchmarking pipeline - exploiting fseval's support for parallel
processing, distributed computing and export possibilities. fseval is open source and published
on the PyPi platform. Next steps are to include more built-in dataset adapters, metrics and
export possibilities.

References

Almuallim, H., & Dietterich, T. G. (1991). Learning with many irrelevant features. In
Proceedings of the Ninth National Conference on Artificial Intelligence, 547-552.

Bayer, M. (2012). SQLAIchemy. In A. Brown & G. Wilson (Eds.), The Architecture of
Open Source Applications Volume Il: Structure, Scale, and a Few More Fearless Hacks.
aosabook.org. http://aosabook.org/en/sqlalchemy.html

Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using Joint Mutual Information
Maximisation. Expert Systems with Applications, 42(22), 8520-8532. https://doi.org/10.
1016/j.eswa.2015.07.007

Biewald, L. (2020). Experiment tracking with weights and biases. https://www.wandb.com/

Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and
support vector machines. Machine Learning Proceedings of the Fifteenth International
Conference(ICML '98), 82-90.

Cilia, N. D., De Stefano, C., Fontanella, F., Raimondo, S., & Scotto di Freca, A. (2019).
An experimental comparison of feature-selection and classification methods for microarray
datasets. Information, 10(3). https://doi.org/10.3390/info10030109

Gu, Q., Li, Z., & Han, J. (2012). Generalized Fisher score for feature selection. arXiv:1202.3725
[Cs, Stat]. http://arxiv.org/abs/1202.3725

Guyon, |., & Elisseeff, A. (2003). An introduction to variable and feature selection. The
Journal of Machine Learning Research, 3(null), 1157-1182.

Kira, K., & Rendell, L. (1992). The feature selection problem: Traditional methods and a new
algorithm. AAAI.

Overschie et al. (2022). fseval: A Benchmarking Framework for Feature Selection and Feature Ranking Algorithms. Journal of Open Source 4
Software, 7(79), 4611. https://doi.org/10.21105/joss.04611.

http://aosabook.org/en/sqlalchemy.html
https://doi.org/10.1016/j.eswa.2015.07.007
https://doi.org/10.1016/j.eswa.2015.07.007
https://www.wandb.com/
https://doi.org/10.3390/info10030109
http://arxiv.org/abs/1202.3725
https://doi.org/10.21105/joss.04611

SS

The Journal of Open Source Software

Kou, G., Yang, P., Peng, Y., Xiao, F., Chen, Y., & Alsaadi, F. E. (2020). Evaluation of
feature selection methods for text classification with small datasets using multiple criteria
decision-making methods. Applied Soft Computing, 86, 105836. https://doi.org/10.1016/
j.asoc.2019.105836

Liu, Y., Bi, J.-W., & Fan, Z.-P. (2017). Multi-class sentiment classification: The experimental
comparisons of feature selection and machine learning algorithms. Expert Systems with
Applications, 80, 323-339. https://doi.org/10.1016/j.eswa.2017.03.042

Nogueira, S., Sechidis, K., & Brown, G. (2018). On the stability of feature selection algorithms.
Journal of Machine Learning Research, 18(174), 1-54. http://jmlr.org/papers/v18/17-514.
html

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 27(8), 1226-1238. https://doi.org/10.1109/TPAMI.
2005.159

Reis, M. S., Estrela, G., Ferreira, C. E., & Barrera, J. (2017). Featsel: A framework for
benchmarking of feature selection algorithms and cost functions. SoftwareX, 6, 193-197.
https://doi.org/10.1016/j.softx.2017.07.005

Roffo, G., Melzi, S., & Cristani, M. (2015). Infinite feature selection. 2015 IEEE International
Conference on Computer Vision (ICCV), 4202-4210. https://doi.org/10.1109/ICCV.2015.
478

Sun, P., Wang, D., Mok, V. C., & Shi, L. (2019). Comparison of feature selection methods
and machine learning classifiers for radiomics analysis in glioma grading. /IEEE Access, 7,
102010-102020. https://doi.org/10.1109/ACCESS.2019.2928975

Tohka, J., Moradi, E., & Huttunen, H. (2016). Comparison of feature selection techniques in
machine learning for anatomical brain MRI in dementia. Neuroinformatics, 14(3), 279-296.
https://doi.org/10.1007/s12021-015-9292-3

Vanschoren, J., Rijn, J. N. van, Bischl, B., & Torgo, L. (2013). OpenML: Networked science in
machine learning. SIGKDD Explorations, 15(2), 49-60. https://doi.org/10.1145/2641190.
2641198

Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. Cyber-
netics and Information Technologies, 19(1), 3-26. https://doi.org/10.2478 /cait-2019-0001

Wojtas, M., & Chen, K. (2020). Feature importance ranking for deep learning.
arXiv:2010.08973 [Cs]. http://arxiv.org/abs/2010.08973

Yadan, O. (2019). Hydra - A framework for elegantly configuring complex applications.
https://github.com/facebookresearch /hydra

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux utility for resource
management. In D. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), Job Scheduling
Strategies for Parallel Processing (pp. 44-60). Springer. https://doi.org/10.1007/
10968987_3

Zhao, Z., & Liu, H. (2007). Searching for interacting features. Proceedings of
the 20th International Joint Conference on Artifical Intelligence, 1156-1161.
https://www.semanticscholar.org/paper/Searching-for-Interacting- Features-Zhao-Liu/
d2debel138a9b67d838b11d622651383322934aee

Overschie et al. (2022). fseval: A Benchmarking Framework for Feature Selection and Feature Ranking Algorithms. Journal of Open Source 5
Software, 7(79), 4611. https://doi.org/10.21105/joss.04611.

https://doi.org/10.1016/j.asoc.2019.105836
https://doi.org/10.1016/j.asoc.2019.105836
https://doi.org/10.1016/j.eswa.2017.03.042
http://jmlr.org/papers/v18/17-514.html
http://jmlr.org/papers/v18/17-514.html
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1016/j.softx.2017.07.005
https://doi.org/10.1109/ICCV.2015.478
https://doi.org/10.1109/ICCV.2015.478
https://doi.org/10.1109/ACCESS.2019.2928975
https://doi.org/10.1007/s12021-015-9292-3
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.2478/cait-2019-0001
http://arxiv.org/abs/2010.08973
https://github.com/facebookresearch/hydra
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://www.semanticscholar.org/paper/Searching-for-Interacting-Features-Zhao-Liu/d2debe138a9b67d838b11d622651383322934aee
https://www.semanticscholar.org/paper/Searching-for-Interacting-Features-Zhao-Liu/d2debe138a9b67d838b11d622651383322934aee
https://doi.org/10.21105/joss.04611

	Summary
	Statement of Need
	Key Features
	The Pipeline
	Fitting
	Scoring

	Conclusion and Future Work
	References

