
DBMS-Benchmarker: Benchmark and Evaluate DBMS
in Python
Patrick K. Erdelt 1¶ and Jascha Jestel1

1 Berliner Hochschule für Technik (BHT) ¶ Corresponding author
DOI: 10.21105/joss.04628

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @simon-lewis
• @erik-whiting

Submitted: 17 June 2022
Published: 02 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
DBMS-Benchmarker is a Python-based application-level blackbox benchmark tool for Database
Management Systems (DBMS). It is intended for reproducible measurement and easy evaluation
of the performance the user receives, even in complex benchmark situations. It connects to a
given list of DBMS (via JDBC) and runs a given list of (SQL) benchmark queries. Queries can
be parametrized and randomized. Results and evaluations are available via a Python interface
and can be inspected with standard Python tools like pandas DataFrames. An interactive
visual dashboard assists in multi-dimensional analysis of the results.

This module has been tested with Clickhouse, Exasol, Citus Data (Hyperscale), IBM DB2,
MariaDB, MariaDB Columnstore, MemSQL (SingleStore), MonetDB, MySQL, OmniSci
(HEAVY.AI), Oracle DB, PostgreSQL, SQL Server, SAP HANA, TimescaleDB, and Ver-
tica.

See the homepage and the documentation for more details.

Statement of Need
Performance benchmarking of database management systems (DBMS) is an active research
area and has a broad audience. It is used “by DBMS developers to evaluate their work and to
find out which algorithm works best in which situation. Benchmarks are used by (potential)
customers to evaluate what system or hardware to buy or rent. Benchmarks are used by
administrators to find bottlenecks and adjust configurations. Benchmarks are used by users to
compare semantically equivalent queries and to find the best formulation alternative”, Erdelt
(2021). Approaches and their special implementations are also examined in benchmarks in
academia. There is a large variety of DBMS types and products. For example, solid IT GmbH
(2022) ranks 350 DBMS (150 Relational) and Carnegie Mellon Database Group (2022) lists
850 DBMS (280 Relational). We focus on Relational DBMS (RDBMS) in the following. Their
types can be divided into, for example, row-wise, column-wise, in-memory, distributed, and
GPU-enhanced. All of these products have unique characteristics, special use cases, advantages
and disadvantages, and their own justification. In order to be able to verify and ensure
performance measurements, we want to be able to create and repeat benchmarking scenarios.
Repetition and thorough evaluation are crucial, in particular in the age of cloud-based systems
with their diversity of hardware configurations (Kersten et al., 2018; Kounev et al., 2020;
Raasveldt et al., 2018).

Thus there is widespread need for a tool to support the repetition and reproducibility of
benchmarking situations, and that is capable of connecting to all these systems.

When we collect a lot of data during benchmarking processes, we also need a tool that will help
with the statistical, visual, and interactive analysis of the results. The authors advocate using
Python as a common Data Science language, since “it is a mature language programming,

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

1

https://orcid.org/0000-0002-3359-2386
https://doi.org/10.21105/joss.04628
https://github.com/openjournals/joss-reviews/issues/4628
https://github.com/Beuth-Erdelt/DBMS-Benchmarker
https://doi.org/10.5281/zenodo.7213676
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/simon-lewis
https://github.com/erik-whiting
https://creativecommons.org/licenses/by/4.0/
https://github.com/Beuth-Erdelt/DBMS-Benchmarker
https://dbmsbenchmarker.readthedocs.io/en/latest/Docs.html
https://doi.org/10.21105/joss.04628


easy for the newbies, and can be used as a specific platform for data scientists, thanks to
its large ecosystem of scientific libraries and its high and vibrant community”, Igual & Seguí
(2017). This helps in implementing the tool within a pipeline, for example to make use of
closed-loop benchmarking situations (He et al., 2019), or to closely inspect parts of queries
(Kersten et al., 2018). It also allows the use of common and sophisticated tools to inspect
and evaluate the results. To name a few: pandas (McKinney, 2010; The pandas development
team, 2020) for statistical evaluation of tabular data, scipy (Virtanen et al., 2020) for scientific
investigation of data, IPython and Jupyter notebooks (Kluyver et al., 2016) for interactive
analysis and display of results, Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021) for
visual analysis, or even machine learning tools. Moreover, Python is currently the most popular
computer language (PYPL, 2022; TIOBE, 2022).

To our knowledge, there is no other such tool, c.f. also the studies in Seybold & Domaschka
(2017) and Brent & Fekete (2019). There are other tools like Apache JMeter (Java), Ham-
merDB (Tcl), Sysbench (LuaJIT), OLTPBench (Java), and BenchBase (Java) that provide very
nice features. However they do not fit these needs, since they are not Python-based. Moreover
some are limited in supported DBMS, in supporting repetition and (statistical) evaluation, or
do not support randomized queries. The design decisions of this tool have been described
in more detail in Erdelt (2021). DBMS-Benchmarker has been used as to support receiving
scientific results about benchmarking DBMS performance in Cloud environments as in Erdelt
(2021) and Erdelt (2022).

Summary of Solution
DBMS-Benchmarker is Python3-based and helps to benchmark DBMS. It

• connects to all DBMS having a JDBC interface
• requires only JDBC - no vendor specific supplements are used
• benchmarks arbitrary SQL queries
• supports planning of complex test scenarios
• allows easy repetition of benchmarks in varying settings
• allows randomized queries to avoid caching side effects
• investigates a number of timing aspects
• investigates a number of other aspects - received result sets, precision, number of clients
• collects hardware metrics from a Prometheus server (Rabenstein & Volz, 2015)

DBMS-Benchmarker helps to evaluate results - by providing

• metrics that can be analyzed by aggregation in multi-dimensions
• predefined evaluations like statistics
• in standard Python data structures
• in Jupyter notebooks - see rendered example
• in an interactive dashboard

Some features are inspired by TPC-H and TPC-DS - Decision Support Benchmarks, which are
provided in part as predefined configs.

A Basic Example
The following simple use case runs the query SELECT COUNT(*) FROM test 10 times against
one local (existing) MySQL installation.

Run pip install dbmsbenchmarker for installation. Make sure Java is set up correctly. We
assume here we have downloaded the required JDBC driver, e.g., mysql-connector-java-
8.0.13.jar.

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

2

https://beuth-erdelt.github.io/DBMS-Benchmarker/Evaluation-Demo.html
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://doi.org/10.21105/joss.04628


Configuration
DBMS configuration file, e.g. in ./config/connections.config

[

{

'name': ”MySQL”,

'active': True,

'JDBC': {

'driver': ”com.mysql.cj.jdbc.Driver”,

'url': ”jdbc:mysql://localhost:3306/database”,

'auth': [”username”, ”password”],

'jar': ”mysql-connector-java-8.0.13.jar”

}

}

]

Queries configuration file, e.g. in ./config/queries.config

{

'name': 'Some simple queries',

'connectionmanagement': {

'timeout': 5 # in seconds

},

'queries':

[

{

'title': ”Count all rows in test”,

'query': ”SELECT COUNT(*) FROM test”,

'numRun': 10

}

]

}

Perform Benchmark and Evaluate Results
Run the CLI command: dbmsbenchmarker run -e yes -b -f ./config

After benchmarking has completed we will see a message like Experiment <code> has been

finished. The script has created a result folder in the current directory containing the results.
<code> is the name of the folder.

Run the CLI command: dbmsdashboard

This will start the evaluation dashboard at localhost:8050. Visit the address in a browser
and select the experiment <code>. Alternatively you may use Python’s pandas.

Description

Experiment
An experiment is organized in queries. A query is a statement that is understood by a Database
Management System (DBMS).

Single Query
A benchmark of a query consists of these steps:

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

3

https://doi.org/10.21105/joss.04628


Figure 1: measured times of query processing parts.

1. Establish a connection between client and server
This uses jaydebeapi.connect() (and also creates a cursor - time not measured)

2. Send the query from client to server and
3. Execute the query on server

These two steps use execute() on a cursor of the JDBC connection
4. Transfer the result back to client

This uses fetchall() on a cursor of the JDBC connection
5. Close the connection

This uses close() on the cursor and the connection

The times needed for the connection (1), execution (2 and 3), and transfer (4) steps are
measured on the client side. A unit of connect, send, execute, and transfer of a single query is
called a run. Connection time will be zero if an existing connection is reused. A sequence of
units of sending, executing, and transmitting between establishing and discarding a connection
is called a session. This is the same as a run, if we always reconnect prior to sending a query,
but if we choose to reuse a connection this will cover multiple runs.

A basic parameter of a query is the number of runs. To configure sessions it is also possible to
adjust

• the number of runs per connection (session length) and
• the number of parallel connections (to simulate several simultanious clients)
• a timeout (maximum lifespan of a connection)
• a delay for throttling (waiting time before each connection or execution)

for the same query. Parallel clients are simulated using the pool.apply_async() method of a
Pool object of the module multiprocessing. Runs and their benchmark times are ordered by
numbering. Moreover we can randomize a query, such that each run will look slightly different.
This means we exchange a part of the query for a random value.

Basic Metrics
We have several timers to collect timing information in milliseconds and per run, corresponding
to the parts of query processing: timerConnection, timerExecution, and timerTransfer. The
tool also computes timerRun (the sum of timerConnection, timerExecution, and timerTransfer)
and timerSession.

We also measure and store the total time of the benchmark of the query, since for parallel
execution this differs from the sum of times based on timerRun. Total time means measurement
starts before the first benchmark run and it stops after the last benchmark run has finished.
Thus total time also includes some overhead (for spawning a pool of subprocesses, computing
the size of result sets, and joining results of subprocesses.) We also compute latency (measured
time) and throughput (number of parallel clients per measured time) for each query and DBMS.

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

4

https://doi.org/10.21105/joss.04628


Additionally error messages and timestamps of the begin and end of benchmarking a query are
stored.

Comparison
We can specify a dict of DBMS. Each query will be sent to every DBMS in the same number of
runs. This also respects randomization, i.e., every DBMS receives exactly the same versions of
the query in the same order. We assume all DBMS will give us the same result sets. Without
randomization, each run should yield the same result set. The tool can automatically check
these assumptions by comparison of sorted result tables (small data sets) or their hash value
or size (bigger data sets). In order to do so, result sets (or their hash value or size) are stored
as lists of lists and additionally can be saved as csv files or pickled pandas DataFrames.

Monitoring Hardware Metrics
To make hardware metrics available, we must provide the API URL of a Prometheus Server.
The tool collects metrics from the Prometheus server with a step size of 1 second. We may
define the metrics in terms of Prometheus’s promql. Metrics can be defined per connection.

Results
As a result, we obtain measured times in milliseconds for the query processing parts: connection,
execution, and data transfer.

Figure 2: evaluation cubes for time and hardware metrics.

These are described in three dimensions: number of run, of query, and of configuration. The
configuration dimension can consist of various nominal attributes like DBMS, selected processor,
assigned cluster node, number of clients, and execution order. We also can have various
hardware metrics like CPU and GPU utilization, CPU throttling, memory caching, and working
set. These are also described in three dimensions: Second of query execution time, number of
query, and of configuration.

Evaluation

Python - Pandas
The cubes of measurements can be sliced or diced, rolled-up, or drilled-down into the various
dimensions and several aggregation functions for evaluation of the metrics can be applied: first,
last, minimum, maximum, arithmetic, and geometric mean, range, and interquartile range,
standard deviation, median, some quantiles, coefficient of variation, and quartile coefficient of
dispersion. This helps in univariate analysis of center and dispersion of the metrics to evaluate
measures and stability.

The package includes tools to convert the three-dimensional results into pandas DataFrames,
like covering errors and warnings that have occured, and timing and hardware metrics that

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

5

https://doi.org/10.21105/joss.04628


have been collected or derived. For example the latency of execution, aggregated in the query
dimension by computing the mean value, can be obtained as:

df = evaluate.get_aggregated_query_statistics(

type='latency', name='execution', query_aggregate='Mean')

Figure 3: example DataFrame: latency of execution times aggregated.

GUI - Dashboard
The package includes a dashboard that helps in interactive evaluation of experiment results.
It shows predefined plots of various types, which can be customized and filtered by DBMS
configuration and query.

Figure 4: screenshot of dashboard.

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

6

https://doi.org/10.21105/joss.04628


Acknowledgements
We acknowledge contributions from Andre Bubbel to include TPC-DS queries.

References
Brent, L., & Fekete, A. (2019). A versatile framework for painless benchmarking of database

management systems. In L. Chang, J. Gan, & X. Cao (Eds.), Databases theory and
applications (pp. 45–56). Springer International Publishing. https://doi.org/10.1007/
978-3-030-12079-5_4

Carnegie Mellon Database Group. (2022). Database of Databases. In Database of Databases.
https://dbdb.io

Erdelt, P. K. (2021). A framework for supporting repetition and evaluation in the process
of cloud-based DBMS performance benchmarking. In R. Nambiar & M. Poess (Eds.),
Performance evaluation and benchmarking (pp. 75–92). Springer International Publishing.
https://doi.org/10.1007/978-3-030-84924-5_6

Erdelt, P. K. (2022). Orchestrating DBMS benchmarking in the cloud with kubernetes. In
R. Nambiar & M. Poess (Eds.), Performance evaluation and benchmarking (pp. 81–97).
Springer International Publishing. https://doi.org/10.1007/978-3-030-94437-7_6

He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., & Soffa, M. L. (2019). A statistics-
based performance testing methodology for cloud applications. Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 188–199. https://doi.org/10.1145/3338906.3338912

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Igual, L., & Seguí, S. (2017). Introduction to data science - a Python approach to con-
cepts, techniques and applications (pp. 1–215). Springer. https://doi.org/10.1007/
978-3-319-50017-1

Kersten, M. L., Koutsourakis, P., & Zhang, Y. (2018). Finding the pitfalls in query performance.
In A. Böhm & T. Rabl (Eds.), Proceedings of the 7th International Workshop on Testing
Database Systems, DBTest@SIGMOD 2018, (pp. 3:1–3:6). ACM. https://doi.org/10.
1145/3209950.3209951

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C.
(2016). Jupyter notebooks – a publishing format for reproducible computational workflows
(F. Loizides & B. Schmidt, Eds.; pp. 87–90). IOS Press. https://doi.org/10.3233/
978-1-61499-649-1-87

Kounev, S., Lange, K.-D., & Kistowski, J. von. (2020). Systems benchmarking - for scientists
and engineers. Springer. https://doi.org/10.1007/978-3-030-41705-5

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Stéfan van der
Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp.
56–61). https://doi.org/10.25080/Majora-92bf1922-00a

PYPL. (2022). PYPL PopularitY of Programming Language index. https://pypl.github.io/
PYPL.html

Raasveldt, M., Holanda, P., Gubner, T., & Mühleisen, H. (2018). Fair benchmarking considered
difficult: Common pitfalls in database performance testing. Proceedings of the Workshop
on Testing Database Systems, 2:1–2:6. https://doi.org/10.1145/3209950.3209955

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

7

https://doi.org/10.1007/978-3-030-12079-5_4
https://doi.org/10.1007/978-3-030-12079-5_4
https://dbdb.io
https://doi.org/10.1007/978-3-030-84924-5_6
https://doi.org/10.1007/978-3-030-94437-7_6
https://doi.org/10.1145/3338906.3338912
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-319-50017-1
https://doi.org/10.1007/978-3-319-50017-1
https://doi.org/10.1145/3209950.3209951
https://doi.org/10.1145/3209950.3209951
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.25080/Majora-92bf1922-00a
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.21105/joss.04628


Rabenstein, B., & Volz, J. (2015). Prometheus: A next-generation monitoring system (talk).
USENIX Association.

Seybold, D., & Domaschka, J. (2017). Is distributed database evaluation cloud-ready?
New Trends in Databases and Information Systems, 100–108. https://doi.org/10.1007/
978-3-319-67162-8_12

solid IT GmbH. (2022). DB-Engines Ranking. In DB-Engines. https://db-engines.com/en/
ranking

The pandas development team. (2020). Pandas-dev/pandas: pandas (latest) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.3509134

TIOBE. (2022). TIOBE Index - TIOBE. In TIOBE. https://www.tiobe.com/tiobe-index

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Erdelt, & Jestel. (2022). DBMS-Benchmarker: Benchmark and Evaluate DBMS in Python. Journal of Open Source Software, 7(79), 4628.
https://doi.org/10.21105/joss.04628.

8

https://doi.org/10.1007/978-3-319-67162-8_12
https://doi.org/10.1007/978-3-319-67162-8_12
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://doi.org/10.5281/zenodo.3509134
https://www.tiobe.com/tiobe-index
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.04628

	Summary
	Statement of Need
	Summary of Solution

	A Basic Example
	Configuration
	DBMS configuration file, e.g. in ./config/connections.config
	Queries configuration file, e.g. in ./config/queries.config

	Perform Benchmark and Evaluate Results

	Description
	Experiment
	Single Query
	Basic Metrics
	Comparison
	Monitoring Hardware Metrics
	Results

	Evaluation
	Python - Pandas
	GUI - Dashboard

	Acknowledgements
	References

