
Nanomesh: A Python workflow tool for generating
meshes from image data
Stef Smeets 1¶, Nicolas Renaud 1, and Lars J. Corbijn van
Willenswaard 2

1 Netherlands eScience Center, The Netherlands 2 University of Twente, The Netherlands ¶
Corresponding author

DOI: 10.21105/joss.04654

Software
• Review
• Repository
• Archive

Editor: Prashant K Jha
Reviewers:

• @jameshgrn
• @vijaysm

Submitted: 24 June 2022
Published: 09 October 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Nanomesh is a Python library that allows users to quickly and easily create 2D and 3D meshes
directly from images of the object they wish to mesh. The automated workflow can preprocess
and segment the picture to extract different regions and create conforming meshes of the
objects. Analysis tools allow evaluating the quality of the resuting mesh and the detection of
problematic regions. The resulting meshes can be exported to a variety of popular formats so
that they can be used in finite element simulations. Nanomesh can be used as python library
for example in Jupyter notebooks, or through dedicated online dashboards.

Statement of need
Simulations based on finite element methods (FEM) often require the creation of a unstructured
mesh that represents the topology and physical properties of the object under examination.
Many meshing libraries exist and allow the creation of such meshes. Several of these are
proprietary with sometimes a substantial fee due to the level of certification required by their
application domains (CENTAUR Software, n.d.; Simpleware, n.d.). Some open source libraries
do exist but often create meshes from a CAD design or well defined primitive (Geuzaine,
Christophe and Remacle, Jean-Francois, 2020; The CGAL Project, 2013). While these meshing
libraries are invaluably useful for the study of idealized systems they do not allow the mesh to
account for potential defects in the underlying topology of the object.

For example, the calculation of the optical properties of nanocrystals is usually performed with
an ideal nano-structure as substrate for the propagation of the Maxwell equations (Hughes et
al., 2005; Koenderink et al., 2005). Such simulations provide very valuable insight but ignore
the effect that manufacturing imprecision of the nanometer-sized pores can have on the overall
properties of the crystal. To resolve such structure-property relationship, meshes conforming
to experimental images of real nanocrystals are needed. The subsequent simulation of wave
propagation through these meshes using any FEM solver leads to a better understanding
of the impact that imperfections may have on the overall properties. Similar use cases in
different fields of material science and beyond are expected. The direct FEM simulations on
real device topology might bring very valuable insights. Through its user friendliness, code
qualitiy, nanomesh will enable scientist running advanced simulations on meshes that accurately
represent the devices that are manufactured experimentally.

Workflow and class hierarchy
A large part of the work of generating a mesh is to pre-process, filter, and segment the image
data to generate a contour that accurately describes the objects of interest.

Smeets et al. (2022). Nanomesh: A Python workflow tool for generating meshes from image data. Journal of Open Source Software, 7(78), 4654.
https://doi.org/10.21105/joss.04654.

1

https://orcid.org/0000-0002-5413-9038
https://orcid.org/0000-0001-9589-2694
https://orcid.org/0000-0001-6554-1527
https://doi.org/10.21105/joss.04654
https://github.com/openjournals/joss-reviews/issues/4654
https://github.com/hpgem/nanomesh
https://doi.org/10.5281/zenodo.7157382
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/jameshgrn
https://github.com/vijaysm
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04654


Figure 1 shows the Nanomesh workflow from left to right. The input data are read from a 2D
or 3D numpy array (Harris et al., 2020) into an Image object. Nanomesh has dedicated classes
(Meshers) to generate contours and triangulate or tetrahedralize the image data.

Meshes are stored in MeshContainers; this is an overarching data class that contains a single set
of coordinates with multiple cell types. This is useful for storing the output from triangulation
as well as the contour obtained after segmentation and the object boundaries. Dedicated Mesh

types contain methods to work with the underlying data structure directly.

Figure 1: Flowchart and class hierarchy for Nanomesh.

Example
To illustrate how to use Nanomesh, we present an example to create 2D and 3D meshes of
nanopores etched in a silicon matrix. These nanopores are very often used in the creation of
optical crystals and the study of their properties is therefore crucial.

Nanomesh works with numpy arrays. The following snippet uses some sample data included
with Nanomesh and loads it into an Image object. Figure 2 shows the input image as output
by the snippet below.

from nanomesh import Image, data

image_array = data.nanopores()

plane = Image(image_array)

plane.show()

Filter and segment the data
Image segmentation is a way to label the pixels of different regions of interest in an image.
In this example, we are interested in separating the silicon bulk material (bright) from the
nanopores (dark).

Common filters and image operations like Gaussian filter are available as a method on the Image

object directly. Nanomesh uses scikit-image (Van der Walt et al., 2014) for image operations.
Other image operations can be applied using the .apply() method, which guarantees an
object of the same type will be returned. For example, the code below is essentially short-hand
for plane_gauss = plane.apply(skimage.filters.gaussian, sigma=5).

plane_gauss = plane.gaussian(sigma=5)

The next step is to segment the image using a threshold method. In this case, we use the li

algorithm (Li & Lee, 1993), because it appears to give good separation.

thresh = plane_gauss.threshold('li')

segmented = plane_gauss.digitize(bins=[thresh])

Smeets et al. (2022). Nanomesh: A Python workflow tool for generating meshes from image data. Journal of Open Source Software, 7(78), 4654.
https://doi.org/10.21105/joss.04654.

2

https://doi.org/10.21105/joss.04654


Figure 2: (left) Input image, (middle) Gaussian-filtered image with contour, (right) and generated
triangle mesh where orange represents the features (pores) and blue the background (bulk material).

Generate mesh
Meshes are generated using the Mesher class. Meshing consists of two steps: contour finding
and triangulation. Contour finding uses the marching cubes algorithm implemented in scikit-

image (Van der Walt et al., 2014) to wrap all the pores in a polygon. max_edge_dist=5

redefines straight edges to have points no more than 5 pixels apart. Sometimes an edge is
defined by (too) many points, which can result in unnessecarily fine meshes, because the
meshing algorithm will not remove these points. level specifies the level at which the contour
is generated. Here, we set it to the threshold value determined above. The code below creates
the contour around the features in the gaussian filtered image.

from nanomesh import Mesher

mesher = Mesher(plane_gauss)

mesher.generate_contour(max_edge_dist=5, level=thresh)

mesher.plot_contour()

Figure 2 shows the output of mesh.plot_contour(), a comparison of the gaussian filtered
image with the contours.

The contours are used as a starting point for triangulation. The triangulation itself is performed
by the triangle library (Shewchuk, 1996). Options can be specified through the opts keyword
argument. This example uses q30 to generate a quality mesh with angles > 30°, and a100 to
set a maximum triangle size of 100 pixels.

mesh = mesher.triangulate(opts='q30a100')

Triangulation returns a MeshContainer dataclass that can be used for various operations, for
example comparing it with the original image:

plane.compare_with_mesh(mesh)

Metrics
Nanomesh contains a metrics module, which can calculate several common mesh quality
indicators, such as the minimum/maximum angle distributions, ratio of radii, shape paramaters,
area, et cetera. The snippet below illustrates how such plots can be generated (Figure 3).

from nanomesh import metrics

triangle_mesh = mesh.get('triangle')

metrics.histogram(triangle_mesh, metric='max_angle')

metrics.plot2d(triangle_mesh, metric='max_angle')

Smeets et al. (2022). Nanomesh: A Python workflow tool for generating meshes from image data. Journal of Open Source Software, 7(78), 4654.
https://doi.org/10.21105/joss.04654.

3

https://doi.org/10.21105/joss.04654


Figure 3: (left) Histogram and (right) 2D plot of maximum angle distribution.

Exporting the data
Data can be exported to various formats. This uses meshio (Schlömer, n.d.), a library for
reading, writing and converting between unstructured mesh formats.

mesh.write('out.msh', file_format='gmsh22', binary=False)

3D volumes
The workflow for 3D data volumes is similar, although the underlying implementation is
different. Instead of a line mesh, a 3D (triangle) surface mesh wraps the segmented volume.
Tetrahedralization is performed using tetgen (Si, 2015) as the underlying library. Figure 4
shows an example of 3D cell data, which were meshed using Nanomesh and vizualized using
PyVista (Sullivan & Kaszynski, 2019).

Figure 4: (left) Slice of the input data, and (right) cut through the 3D mesh generated where yellow
correspond to the cells and purple to the background volume.

Acknowledgements
We acknowledge contributions from Jaap van der Vegt, Matthias Schlottbom and Willem Vos
for scientific input and helpful discussions guiding the development of Nanomesh.

References
CENTAUR software. (n.d.). [Computer software]. https://centaursoft.com

Smeets et al. (2022). Nanomesh: A Python workflow tool for generating meshes from image data. Journal of Open Source Software, 7(78), 4654.
https://doi.org/10.21105/joss.04654.

4

https://centaursoft.com
https://doi.org/10.21105/joss.04654


Geuzaine, Christophe and Remacle, Jean-Francois. (2020). Gmsh (Version 4.6.0) [Computer
software]. http://http://gmsh.info/

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hughes, S., Ramunno, L., Young, J. F., & Sipe, J. E. (2005). Extrinsic optical scattering
loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity.
Phys. Rev. Lett., 94, 033903. https://doi.org/10.1103/PhysRevLett.94.033903

Koenderink, A. F., Lagendijk, A., & Vos, W. L. (2005). Optical extinction due to intrinsic
structural variations of photonic crystals. Phys. Rev. B, 72, 153102. https://doi.org/10.
1103/PhysRevB.72.153102

Li, C. H., & Lee, C. K. (1993). Minimum cross entropy thresholding. Pattern Recognition,
26(4), 617–625. https://doi.org/10.1016/0031-3203(93)90115-D

Schlömer, N. (n.d.). meshio: Tools for mesh files. https://doi.org/10.5281/zenodo.1173115

Shewchuk, J. R. (1996). Triangle: Engineering a 2D quality mesh generator and delaunay
triangulator. In M. C. Lin & D. Manocha (Eds.), Applied computational geometry towards
geometric engineering (pp. 203–222). Springer Berlin Heidelberg. https://doi.org/10.
1007/bfb0014497

Si, H. (2015). TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Softw., 41(2). https://doi.org/10.1145/2629697

Simpleware. (n.d.). Simpleware ScanIP. https://www.synopsys.com/simpleware/software/
scanip.html

Sullivan, C. B., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the visualization toolkit (VTK). Journal of Open Source Software,
4(37), 1450. https://doi.org/10.21105/joss.01450

The CGAL Project. (2013). CGAL user and reference manual (4.3 ed.). CGAL Editorial Board.
http://doc.cgal.org/4.3/Manual/packages.html

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager,
N., Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2,
e453. https://doi.org/10.7717/peerj.453

Smeets et al. (2022). Nanomesh: A Python workflow tool for generating meshes from image data. Journal of Open Source Software, 7(78), 4654.
https://doi.org/10.21105/joss.04654.

5

http://http://gmsh.info/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1103/PhysRevLett.94.033903
https://doi.org/10.1103/PhysRevB.72.153102
https://doi.org/10.1103/PhysRevB.72.153102
https://doi.org/10.1016/0031-3203(93)90115-D
https://doi.org/10.5281/zenodo.1173115
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1145/2629697
https://www.synopsys.com/simpleware/software/scanip.html
https://www.synopsys.com/simpleware/software/scanip.html
https://doi.org/10.21105/joss.01450
http://doc.cgal.org/4.3/Manual/packages.html
https://doi.org/10.7717/peerj.453
https://doi.org/10.21105/joss.04654

	Summary
	Statement of need
	Workflow and class hierarchy
	Example
	Filter and segment the data
	Generate mesh
	Metrics
	Exporting the data

	3D volumes
	Acknowledgements
	References

