
𝜌𝜇: A Java library of randomization enhancements
and other math utilities
Vincent A. Cicirello 1

1 Computer Science, School of Business, Stockton University, Galloway, NJ 08205, USA
DOI: 10.21105/joss.04663

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @xtruan
• @pritchardn

Submitted: 02 August 2022
Published: 27 August 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The 𝜌𝜇 library is a Java library of Randomization enHancements and Other Math Utilities. It
originated as a core dependency for our other open source research software libraries, such as
JavaPermutationTools (Cicirello, 2018b) and Chips-n-Salsa (Cicirello, 2020), providing these
libraries with efficient randomization related algorithms. For example, Chips-n-Salsa is a library
of stochastic local search and evolutionary algorithms, which requires fast generation of random
indexes into arrays and other structures, as well as fast generation of non-uniform random
numbers to implement Gaussian mutation, Cauchy mutation, etc. The 𝜌𝜇 library includes
implementations of efficient algorithms for randomly sampling indexes into arrays and other
sequential structures, randomly sampling pairs and triples of distinct indexes, randomly sampling
𝑘 indexes, among others, and also includes efficient random number generation from non-
uniform distributions, such as Gaussian, Cauchy, and Binomial. It also includes math functions
required by the randomization utilities. The documentation is hosted on the web (https:
//rho-mu.cicirello.org/), and source code on GitHub (https://github.com/cicirello/rho-mu),
which includes a directory of example programs illustrating 𝜌𝜇 usage.

Functionality
The randomization enhancements provided by 𝜌𝜇 include:

• Faster generation of random integers subject to a bound or bound and origin, using the
algorithm of Lemire (2019), as well as faster generation of streams of bounded integers.
A sample program demonstrates the speed advantage, where on average 𝜌𝜇 used 53.3%
less CPU time than Java’s RandomGenerator.nextInt(bound).

• Faster generation of Gaussian distributed random doubles, with a Java port of the GNU
Scientific Library’s C implementation (Voss, 2014) of the Ziggurat algorithm (Leong et
al., 2005; Marsaglia & Tsang, 2000).

• Additional distributions available beyond what is supported by the Java API’s
RandomGenerator classes, such as Binomial and Cauchy random variables.

• Ultrafast, but biased, nextBiasedInt methods that exclude rejection sampling to trade-
off uniformity for speed, based on Lemire (2019), as well as streams of such biased
integers. A sample program shows the substantial speed advantage offered for cases
where strict uniformity is not required, where on average 𝜌𝜇’s nextBiasedInt(bound)

used 99.2% less CPU time than Java’s RandomGenerator.nextInt(bound).
• Methods for generating random pairs and triples of integers without replacement.
• Methods for generating random samples of 𝑘 integers without replacement from a range

of 𝑛 integers, including three alternative algorithms, reservoir sampling (Vitter, 1985),
pool sampling (Ernvall & Nevalainen, 1982), and insertion sampling (Cicirello, 2022), as
well as a method that chooses among these based on 𝑛 and 𝑘.

• Streams from binomial, Cauchy, exponential, and Gaussian distributions.

Cicirello. (2022). 𝜌𝜇: A Java library of randomization enhancements and other math utilities. Journal of Open Source Software, 7(76), 4663.
https://doi.org/10.21105/joss.04663.

1

https://orcid.org/0000-0003-1072-8559
https://doi.org/10.21105/joss.04663
https://github.com/openjournals/joss-reviews/issues/4663
https://github.com/cicirello/rho-mu
https://doi.org/10.5281/zenodo.7026452
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/xtruan
https://github.com/pritchardn
https://creativecommons.org/licenses/by/4.0/
https://rho-mu.cicirello.org/
https://rho-mu.cicirello.org/
https://github.com/cicirello/rho-mu
https://doi.org/10.21105/joss.04663


Comparisons used OpenJDK 17 and Windows 10 on an AMD A10-5700 3.4GHz CPU with
8GB DDR3 RAM. The GitHub repository includes the data and t-Test results demonstrating
the speed enhancements at extremely statistically significant levels.

Architecture
Figure 1 provides a UML diagram illustrating the architecture of the library. Java 17 introduced
a RandomGenerator interface, and five nested subinterfaces for special types of random number
generator. The 𝜌𝜇 library provides a hierarchy of wrapper classes corresponding to Java 17’s
RandomGenerator interface hierarchy. This enables using 𝜌𝜇’s EnhancedRandomGenerator, and
its subclasses, as drop-in replacements in existing applications.

Figure 1: UML diagram of 𝜌𝜇. Java API interfaces in gray, and 𝜌𝜇 classes in blue.

Cicirello. (2022). 𝜌𝜇: A Java library of randomization enhancements and other math utilities. Journal of Open Source Software, 7(76), 4663.
https://doi.org/10.21105/joss.04663.

2

https://doi.org/10.21105/joss.04663


Statement of Need
The original motivation for the 𝜌𝜇 library is to provide efficient algorithms for randomization
operations commonly needed by stochastic local search (Hoos & Stützle, 2018) and evolutionary
algorithms (Doerr & Neumann, 2019; Petrowski & Ben-Hamida, 2017). Such algorithms rely
heavily on randomized behavior, including the need to generate very many random indexes into
linear structures such as vectors of bits. Sometimes independent random indexes are required,
while other times (such as for a 𝑘-point crossover) a random sample without replacement
is necessary. For real-valued optimization problems, evolutionary algorithms require random
numbers from non-uniform distributions such as for Gaussian mutation (Hinterding, 1995)
or Cauchy mutation (Szu & Hartley, 1987). Our prior research showed that evolutionary
algorithms are so reliant upon random number generation that one can achieve as much as a
25% speed up by optimizing choice of random number algorithms alone (Cicirello, 2018a).

Efficient randomization has important research applications in a variety of other areas as well,
such as in modeling and simulation (Greasley & Edwards, 2021; Rabe et al., 2020; Zhang et
al., 2019), domain randomization (Tobin et al., 2017) for sim-to-real transfer learning (Zhao
et al., 2020), among others.

Java 17 introduced a substantial overhaul of its random number support, adding a hierarchy
of interfaces, where no common interface previously existed; as well as adding several pseudo-
random number generators (PRNG) along with a factory class. Java libraries exist, such as
Apache Commons (The Apache Software Foundation, 2021), PRNGine (Jenetics, 2022), and
Uncommons Maths (Dyer, 2014), that provide additional PRNGs and in some cases specialized
algorithms for sampling, additional distributions, and other randomization operations. But,
I believe that 𝜌𝜇 is the first library to be designed around Java 17’s RandomGenerator inter-
face hierarchy, providing a convenient mechanism to add support for additional specialized
randomization operations to any of Java 17’s PRNGs or even those from other libraries like
Apache Commons. 𝜌𝜇’s architecture provides a drop-in replacement approach enabling easily
upgrading randomization functionality of existing PRNGs in existing applications.

References
Cicirello, V. A. (2018a). Impact of random number generation on parallel genetic algorithms.

Proceedings of the Thirty-First International Florida Artificial Intelligence Research Society
Conference, 2–7.

Cicirello, V. A. (2018b). JavaPermutationTools: A java library of permutation distance metrics.
Journal of Open Source Software, 3(31), 950. https://doi.org/10.21105/joss.00950

Cicirello, V. A. (2020). Chips-n-salsa: A java library of customizable, hybridizable, iterative,
parallel, stochastic, and self-adaptive local search algorithms. Journal of Open Source
Software, 5(52), 2448. https://doi.org/10.21105/joss.02448

Cicirello, V. A. (2022). Cycle mutation: Evolving permutations via cycle induction. Applied
Sciences, 12(11). https://doi.org/10.3390/app12115506

Doerr, B., & Neumann, F. (2019). Theory of evolutionary computation: Recent developments
in discrete optimization. Springer. ISBN: 9783030294144

Dyer, D. W. (2014). Uncommons maths: Random number generators, probability distributions,
combinatorics and statistics for java. In GitHub Repository. GitHub. https://github.com/
dwdyer/uncommons-maths

Ernvall, J., & Nevalainen, O. (1982). An algorithm for unbiased random sampling. The
Computer Journal, 25(1), 45–47. https://doi.org/10.1093/comjnl/25.1.45

Greasley, A., & Edwards, J. S. (2021). Enhancing discrete-event simulation with big data

Cicirello. (2022). 𝜌𝜇: A Java library of randomization enhancements and other math utilities. Journal of Open Source Software, 7(76), 4663.
https://doi.org/10.21105/joss.04663.

3

https://doi.org/10.21105/joss.00950
https://doi.org/10.21105/joss.02448
https://doi.org/10.3390/app12115506
https://github.com/dwdyer/uncommons-maths
https://github.com/dwdyer/uncommons-maths
https://doi.org/10.1093/comjnl/25.1.45
https://doi.org/10.21105/joss.04663


analytics: A review. Journal of the Operational Research Society, 72(2), 247–267. https:
//doi.org/10.1080/01605682.2019.1678406

Hinterding, R. (1995). Gaussian mutation and self-adaption for numeric genetic algorithms.
IEEE International Conference on Evolutionary Computation, 1, 384–389. https://doi.org/
10.1109/ICEC.1995.489178

Hoos, H. H., & Stützle, T. (2018). Stochastic local search. In Handbook of approximation
algorithms and metaheuristics methologies and traditional applications (2nd ed., Vol. 1).
Chapman; Hall/CRC.

Jenetics. (2022). PRNGine - pseudo random number engines for monte carlo simulations. In
GitHub repository. GitHub. https://github.com/jenetics/prngine

Lemire, D. (2019). Fast random integer generation in an interval. ACM Transactions on
Modeling and Computer Simulation, 29(1). https://doi.org/10.1145/3230636

Leong, P. H. W., Zhang, G., Lee, D.-U., Luk, W., & Villasenor, J. (2005). A comment on
the implementation of the ziggurat method. Journal of Statistical Software, 12(7), 1–4.
https://doi.org/10.18637/jss.v012.i07

Marsaglia, G., & Tsang, W. W. (2000). The ziggurat method for generating random variables.
Journal of Statistical Software, 5(8), 1–7. https://doi.org/10.18637/jss.v005.i08

Petrowski, A., & Ben-Hamida, S. (2017). Evolutionary algorithms. Wiley. https://doi.org/10.
1002/9781119136378

Rabe, M., Deininger, M., & Juan, A. A. (2020). Speeding up computational times in
simheuristics combining genetic algorithms with discrete-event simulation. Simulation
Modelling Practice and Theory, 103, 102089. https://doi.org/10.1016/j.simpat.2020.
102089

Szu, H. H., & Hartley, R. L. (1987). Nonconvex optimization by fast simulated annealing.
Proceedings of the IEEE, 75(11), 1538–1540. https://doi.org/10.1109/PROC.1987.13916

The Apache Software Foundation. (2021). Apache commons RNG: Random numbers genera-
tors. Apache. https://commons.apache.org/proper/commons-rng/

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 23–30.
https://doi.org/10.1109/IROS.2017.8202133

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1), 37–57. https://doi.org/10.1145/3147.3165

Voss, J. (2014). The ziggurat method for generating gaussian random numbers. In GNU
Scientific Library. GNU. https://www.seehuhn.de/pages/ziggurat

Zhang, L., Zhou, L., Ren, L., & Laili, Y. (2019). Modeling and simulation in intelligent
manufacturing. Computers in Industry, 112, 103123. https://doi.org/10.1016/j.compind.
2019.08.004

Zhao, W., Queralta, J. P., & Westerlund, T. (2020). Sim-to-real transfer in deep reinforcement
learning for robotics: A survey. 2020 IEEE Symposium Series on Computational Intelligence
(SSCI), 737–744. https://doi.org/10.1109/SSCI47803.2020.9308468

Cicirello. (2022). 𝜌𝜇: A Java library of randomization enhancements and other math utilities. Journal of Open Source Software, 7(76), 4663.
https://doi.org/10.21105/joss.04663.

4

https://doi.org/10.1080/01605682.2019.1678406
https://doi.org/10.1080/01605682.2019.1678406
https://doi.org/10.1109/ICEC.1995.489178
https://doi.org/10.1109/ICEC.1995.489178
https://github.com/jenetics/prngine
https://doi.org/10.1145/3230636
https://doi.org/10.18637/jss.v012.i07
https://doi.org/10.18637/jss.v005.i08
https://doi.org/10.1002/9781119136378
https://doi.org/10.1002/9781119136378
https://doi.org/10.1016/j.simpat.2020.102089
https://doi.org/10.1016/j.simpat.2020.102089
https://doi.org/10.1109/PROC.1987.13916
https://commons.apache.org/proper/commons-rng/
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1145/3147.3165
https://www.seehuhn.de/pages/ziggurat
https://doi.org/10.1016/j.compind.2019.08.004
https://doi.org/10.1016/j.compind.2019.08.004
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.21105/joss.04663

	Summary
	Functionality
	Architecture
	Statement of Need
	References

