
CMinx: A CMake Documentation Generator
Branden Butler1,2* and Ryan M. Richard 1,2*¶

1 Ames National Laboratory, Ames, IA, USA 2 Iowa State University, Ames, IA, USA ¶ Corresponding
author * These authors contributed equally.

DOI: 10.21105/joss.04680

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @robertodr
• @peanutfun

Submitted: 12 August 2022
Published: 27 September 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
This manuscript introduces CMinx, a program for generating application programming interface
(API) documentation written in the CMake language, and CMake modules in particular. Since
most of CMinx’s intended audience is comprised of C/C++ developers, CMinx is designed
to operate similar to Doxygen (Heesch, 2022), the de facto C/C++ API documentation
tool. Specifically, developers annotate their CMake source with “documentation” comments,
which are traditional CMake block comments starting with an extra “[” character. The
documentation comments, written in reST (reStructuredText, 2022), describe to the reader
how the functions, parameters, and variables should be used. Running CMinx on the annotated
source code generates reST files containing the API documentation. The reST files can then
be converted into static websites with tools such as Sphinx (Sphinx, 2022) or easily converted
to another format via Pandoc (Pandoc, 2022).

Unlike other solutions for documenting CMake modules, CMinx knows the CMake language’s
grammar. This enables CMinx to automatically extract function/macro signatures, even when
functions are not documented. CMinx also integrates seamlessly into existing CMake build
systems. CMinx’s output is highly customizable and easily controlled via a YAML (YAML,
2022) configuration file. CMinx has already proved to be an invaluable productivity tool in the
authors’ other projects, and, given that other scientific software projects also rely heavily on
source code written in CMake, we anticipate CMinx will prove invaluable to many additional
projects as well.

Concurrent with the submission of this manuscript, we have also released the first production
version of CMinx, version 1.0.0. CMinx can be obtained from the Python Packaging Index
via “pip install CMinx”. Alternatively, CMinx can be used as a CMake module via CMake’s
“FetchContent” command. Despite only just releasing 1.0.0, the CMinx GitHub organization
has already started to see attention and interest from developers not affiliated with the authors.
We anticipate CMinx will be a useful productivity tool for the large swath of research software
that uses CMake as their build system.

Statement of need
The process of building a software package written in a compiled language (e.g., C, C++,
Fortran) has always been complicated. Over the years, various build system solutions have
evolved to ease the process. Historically, there has been a propensity to treat each build system
as a one-off use case. This is understandable since build systems have tended to be relatively
small and tightly coupled to the structure and purpose of the package. With build system
complexity at an all-time high (Bartlett et al., 2017; Snir et al., 2014), there is an increasing
need to treat the underlying build system infrastructure as code. This means that the build
system should be modularized, and those modules should be documented, tested, and reusable.
With the popularity of C/C++ for high-performance computing, “build system” is increasingly

Butler, & Richard. (2022). CMinx: A CMake Documentation Generator. Journal of Open Source Software, 7(77), 4680. https://doi.org/10.
21105/joss.04680.

1

https://orcid.org/0000-0003-4235-5179
https://doi.org/10.21105/joss.04680
https://github.com/openjournals/joss-reviews/issues/4680
https://github.com/CMakePP/CMinx
https://doi.org/10.5281/zenodo.7116609
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/robertodr
https://github.com/peanutfun
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04680
https://doi.org/10.21105/joss.04680


becoming synonymous with CMake: there is a desperate need for a robust CMake development
ecosystem.

CMake already contains a number of tools and features that facilitate development of the
target software package. For example, CMake’s find_package module simplifies dependency
management, and the CTest package eases the process of testing the resulting software.
Additional CMake tools can be created by writing CMake modules. While the CMake language
is flexible and relatively simple, it is not without its pitfalls. Unfortunately, tools to facilitate
the development of CMake modules are relatively sparse. Here we introduce CMinx, a tool for
generating API documentation for CMake modules. API documentation is arguably one of the
most basic elements of a software development ecosystem, and it is our hope that CMinx will
serve as the foundation for a robust CMake development ecosystem.

Anecdotal evidence (tjwrona1992, 2019) indicates that Kitware, the developers of the CMake
language, internally write their API documentation using reST and Sphinx. Following best
practices, this reST documentation resides next to the described CMake code. Kitware has
also written a Sphinx plugin that makes it easy to extract the API documentation as part
of a normal Sphinx workflow. This Sphinx plugin is distributed with the source code for the
CMake interpreter and is also available in a GitHub repository mirror (Kitware, 2022). For
completeness, we note that similar Sphinx plugins (Koch, 2020; Lorenz, 2013) have been
independently developed but appear to now be abandoned.

To our knowledge, all of the aforementioned Sphinx plugins simply extract the reST API
documentation verbatim. Notably, this means the developer is responsible for manually adding
the function/macro signatures to the documentation, listing the function’s parameters, and the
overall formatting. For build system developers maintaining one or two CMake modules, these
are admittedly pretty minor inconveniences; however, for organizations maintaining a substantial
CMake code base (such as those for exascale programs), these “minor inconveniences” can
impact productivity, particularly when ensuring consistency. CMinx differs from previous
solutions primarily in three ways. First, CMinx understands the grammar of the CMake
language, meaning CMinx can automatically generate some of the documentation by “reading”
the source code. Second, CMinx generates static reST files; this decreases the number of stub
files developers need to maintain and makes it easier for the resulting documentation to be
used in workflows that do not rely on Sphinx. Finally, CMinx has a CMake API to integrate
more easily into existing CMake workflows.

Acknowledgements
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration.

The authors would also like to acknowledge GitHub users dschiller, ni-dschiller, ni-fgenois,
peanutfun, robertodr, and zachcran for suggestions, discussions, bug reports, and bug fixes.

References
Bartlett, R., Demeshko, I., Gamblin, T., Hammond, G., Heroux, M., Johnson, J., Klinvex, A.,

Li, X., McInnes, L. C., Moulton, J. D., Osei-Kuffuor, D., Sarich, J., Smith, B., Willenbring,
J., & Yang, U. M. (2017). xSDK foundations: Toward an extreme-scale scientific software
development kit. arXiv. https://doi.org/10.48550/arXiv.1702.08425

Heesch, D. van. (2022). Doxygen. In GitHub Repository. GitHub. https://github.com/
doxygen/doxygen

Butler, & Richard. (2022). CMinx: A CMake Documentation Generator. Journal of Open Source Software, 7(77), 4680. https://doi.org/10.
21105/joss.04680.

2

https://doi.org/10.48550/arXiv.1702.08425
https://github.com/doxygen/doxygen
https://github.com/doxygen/doxygen
https://doi.org/10.21105/joss.04680
https://doi.org/10.21105/joss.04680


Kitware. (2022). Sphinx domain for modern CMake. GitHub Repository. https://github.com/
scikit-build/moderncmakedomain

Koch, M. (2020). Sphinx-cmake_domain. In GitHub Repository. GitHub. https://github.
com/MarcoKoch/sphinx-cmake_domain

Lorenz, K.-U. (2013). GNU make domain. In GitHub Repository. GitHub. https://github.
com/sphinx-contrib/cmakedomain

Pandoc: A universal document converter. (2022). https://pandoc.org/

reStructuredText: Markup syntax and parser component of docutils. (2022). https://docutils.
sourceforge.io/rst.html

Snir, M., Wisniewski, R. W., Abraham, J. A., Adve, S. V., Bagchi, S., Balaji, P., Belak, J.,
Bose, P., Cappello, F., Carlson, B., Chien, A. A., Coteus, P., DeBardeleben, N. A., Diniz, P.
C., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R., … Hensbergen, E. V. (2014).
Addressing failures in exascale computing. The International Journal of High Performance
Computing Applications, 28, 129–173. https://doi.org/10.1177/1094342014522573

Sphinx: Python documentation generator. (2022). https://www.sphinx-doc.org/en/master/

tjwrona1992. (2019). What is the proper way to document a cmake module. In Stack Overflow
Forum. StackOverflow. https://stackoverflow.com/a/54671996

YAML: YAML ain’t markup language. (2022). https://yaml.org

Butler, & Richard. (2022). CMinx: A CMake Documentation Generator. Journal of Open Source Software, 7(77), 4680. https://doi.org/10.
21105/joss.04680.

3

https://github.com/scikit-build/moderncmakedomain
https://github.com/scikit-build/moderncmakedomain
https://github.com/MarcoKoch/sphinx-cmake_domain
https://github.com/MarcoKoch/sphinx-cmake_domain
https://github.com/sphinx-contrib/cmakedomain
https://github.com/sphinx-contrib/cmakedomain
https://pandoc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://doi.org/10.1177/1094342014522573
https://www.sphinx-doc.org/en/master/
https://stackoverflow.com/a/54671996
https://yaml.org
https://doi.org/10.21105/joss.04680
https://doi.org/10.21105/joss.04680

	Summary
	Statement of need
	Acknowledgements
	References

