
PyCPD: Pure NumPy Implementation of the Coherent
Point Drift Algorithm
Anthony A. Gatti 1,2 and Siavash Khallaghi3¶

1 Stanford University, USA 2 NeuralSeg Ltd., Canada 3 Independent Researcher, Canada ¶
Corresponding author

DOI: 10.21105/joss.04681

Software
• Review
• Repository
• Archive

Editor: Hugo Ledoux
Reviewers:

• @zexinyang
• @rickie95

Submitted: 14 July 2022
Published: 15 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Background
Point cloud registration is a common problem in many areas of computer science, particularly
computer vision. Point clouds come from many types of data such as LIDAR commonly used
for self-driving vehicles, and other sorts of 3D scanners (e.g., structured light) are commonly
used to map the surface of physical objects. Point clouds are also used to represent the surface
of an anatomical structure extracted from a medical image. Point cloud registration finds a
transformation from one point cloud to another. Point cloud registration has use cases in
many fields from self-driving vehicles to medical imaging and virtual reality. Typically, point
cloud registration is classified into rigid (only rotations or translations), affine (rigid + shearing
and scaling) and non-rigid also called deformable registration (non-linear deformation).

Point cloud registration typically requires 2 point clouds. The first point cloud is the “fixed” or
“target” point cloud and the second is the “moving” or “source” point cloud. We try to find
the transformation that will best align the moving (or source) point cloud with the fixed point
cloud. One of the most well known rigid point cloud registration algorithms is the Iterative
Closest Point (ICP) algorithm (Besl & McKay, 1992; Chen & Medioni, 1992). ICP is an
iterative algorithm where the following steps are iterated:

(1) for every point on the moving point cloud find the closest point on the fixed point cloud
(2) use a least squares approach to find the optimal transformation matrix (rotation, trans-

lation, scaling, shear) to align the point correspondences found in (1)
(3) apply the transformation from (2) to the moving point cloud

These steps are repeated until the root mean squared point-to-point distances from (1)
converge.

The coherent point drift (CPD) algorithm was created by Myronenko and Song (Myronenko
& Song, 2010) to overcome many of the limitations of ICP and other previous registration
methods (Besl & McKay, 1992; Chen & Medioni, 1992; Fitzgibbon, 2003; Rusinkiewicz &
Levoy, 2001). Namely, these other methods did not necessarily generalize to dimensions greater
than 3 and they were prone to errors such as noise, outliers, or missing points. The CPD
algorithm is a probabilistic multidimensional algorithm that is robust and works for both rigid
and non-rigid registration. In CPD the moving point cloud is modelled as a Gaussian Mixture
Model (GMM) and the fixed point cloud is treated as observations from the GMM. The optimal
transformation parameters maximize the Maximum Likelihood / Maximum A Posteriori (MAP)
estimation that the observed point cloud is drawn from the GMM. A key point of the CPD
algorithm is that it forces the points to move coherently by preserving topological structure.
The CPD algorithm is also an iterative algorithm that iterates between an expectation (E)
step and a maximization (M) step until convergence is achieved. The E-step estimates the
posterior probability distributions of the GMM centroids (moving points) given the data (fixed
points) then the M-step updates the transformation to maximize the posterior probability that
the data belong to the GMM distributions. The E- and M-steps are iterated until convergence.

Gatti, & Khallaghi. (2022). PyCPD: Pure NumPy Implementation of the Coherent Point Drift Algorithm. Journal of Open Source Software, 7(80),
4681. https://doi.org/10.21105/joss.04681.

1

https://orcid.org/0000-0001-6717-8979
https://doi.org/10.21105/joss.04681
https://github.com/openjournals/joss-reviews/issues/4681
https://github.com/siavashk/pycpd
https://doi.org/10.5281/zenodo.7343379
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/zexinyang
https://github.com/rickie95
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04681


Statement of need
Due to the robustness and the broad array of uses for the CPD algorithm the original CPD
paper has currently (March 2022) been referenced >2000 times. The CPD algorithm is
available in Matlab (The MathWorks Inc., n.d.) and an open-source C++ version has been
implemented (Gadomski, n.d.). However, to the best of our knowledge, no open-source python
version previously existed. In this paper we present a pure NumPy (Harris et al., 2020) version
of the CPD algorithm to enable general use of CPD for the Python community. Furthermore,
the full implementation in NumPy makes the algorithm accessible for others to learn from.
To help in learning, a blog post that coincides with this library has previously been published
(Khallaghi, 2017).

Summary
The PyCPD package implements the CPD algorithm in NumPy. The library itself includes a
module to implement the Expectation Maximization (EM) algorithm. Sub-modules inherit
the EM functionality and implement rigid, affine, and deformable registration using EM. CPD
registration using affine, rigid, and deformable methods all allow for the transformation learned
from CPD to be applied to any point cloud. Thus, it is possible to learn the transformation
on a subset of the points and then apply it to the whole point cloud to reduce computation
time. Finally, the low-rank approximation for deformable registration that was described by
Myronenko and Song (Myronenko & Song, 2010) was implemented. A low rank approximation
of the Gaussian kernel is used to reduce computation time and has the added benefit of
regularizing the non-rigid deformation.

Figure 1: Visualization of the 3D rigid registration from the examples included in the library. Each panel
represents a different iteration in the registration process. The Q parameter is the objective function that
is optimized using the EM-algorithm during registration.

Gatti, & Khallaghi. (2022). PyCPD: Pure NumPy Implementation of the Coherent Point Drift Algorithm. Journal of Open Source Software, 7(80),
4681. https://doi.org/10.21105/joss.04681.

2

https://doi.org/10.21105/joss.04681


Examples of how to use the PyCPD algorithm are included in the package, Figure 1 displays
the visualization corresponding with a 3D rigid registration example. Examples are available
for 2D and 3D versions of all registration methods (rigid, affine, deformable). Examples of how
to use the low-rank approximation as well as how to use a sub-set of the points for registration
are also included in the examples.

Acknowledgements
We acknowledge contributions from:

• Alvin Wan for testing on Python 3.x.
• Talley Lambert for pointing out that the moving point cloud should be immutable during

registration.
• Matthew DiFranco for fixing the check for target point clouds.
• normanius for pointing out that the contribution of uniform distribution was not being

added in the E-step.
• Kai Zhang for finding a bug when transforming a point cloud using rigid registration

parameters.
• sandyhsia for finding a bug when updating the variance during deformable registration.
• Arthur Porto for contributions to the community, both in the issues and adding a priors

option to cpd

References
Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2), 239–256. https://doi.org/10.1109/
34.121791

Chen, Y., & Medioni, G. (1992). Object modelling by registration of multiple range images.
Image and Vision Computing, 10(3), 145–155. https://doi.org/10.1016/0262-8856(92)
90066-C

Fitzgibbon, A. W. (2003). Robust registration of 2D and 3D point sets. Image and Vision
Computing, 21(13), 1145–1153. https://doi.org/10.1016/j.imavis.2003.09.004

Gadomski, P. (n.d.). Gadomski/CPD: C++ implementation of the coherent point drift point
set registration algorithm. https://github.com/gadomski/cpd

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Khallaghi, S. (2017). PyCPD: Tutorial on the coherent point drift algorithm. http://siavashk.
github.io/2017/05/14/coherent-point-drift/

Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275. https:
//doi.org/10.1109/TPAMI.2010.46

Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. Proceedings
Third International Conference on 3-d Digital Imaging and Modeling, 145–152. https:
//doi.org/10.1109/IM.2001.924423

The MathWorks inc. (version 9.5 (R2018b)). (n.d.). [Computer software]. https://www.
mathworks.com/help/vision/ref/pcregistercpd.html

Gatti, & Khallaghi. (2022). PyCPD: Pure NumPy Implementation of the Coherent Point Drift Algorithm. Journal of Open Source Software, 7(80),
4681. https://doi.org/10.21105/joss.04681.

3

https://doi.org/10.1109/34.121791
https://doi.org/10.1109/34.121791
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/j.imavis.2003.09.004
https://github.com/gadomski/cpd
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://siavashk.github.io/2017/05/14/coherent-point-drift/
http://siavashk.github.io/2017/05/14/coherent-point-drift/
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1109/IM.2001.924423
https://www.mathworks.com/help/vision/ref/pcregistercpd.html
https://www.mathworks.com/help/vision/ref/pcregistercpd.html
https://doi.org/10.21105/joss.04681

	Background
	Statement of need
	Summary
	Acknowledgements
	References

