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Background

Point cloud registration is a common problem in many areas of computer science, particularly
computer vision. Point clouds come from many types of data such as LIDAR commonly used
for self-driving vehicles, and other sorts of 3D scanners (e.g., structured light) are commonly
used to map the surface of physical objects. Point clouds are also used to represent the surface
of an anatomical structure extracted from a medical image. Point cloud registration finds a
transformation from one point cloud to another. Point cloud registration has use cases in
many fields from self-driving vehicles to medical imaging and virtual reality. Typically, point
cloud registration is classified into rigid (only rotations or translations), affine (rigid + shearing
and scaling) and non-rigid also called deformable registration (non-linear deformation).

Point cloud registration typically requires 2 point clouds. The first point cloud is the “fixed” or

“target” point cloud and the second is the “moving” or “source” point cloud. We try to find

the transformation that will best align the moving (or source) point cloud with the fixed point
cloud. One of the most well known rigid point cloud registration algorithms is the Iterative
Closest Point (ICP) algorithm (Besl & McKay, 1992; Chen & Medioni, 1992). ICP is an
iterative algorithm where the following steps are iterated:

(1) for every point on the moving point cloud find the closest point on the fixed point cloud

(2) use a least squares approach to find the optimal transformation matrix (rotation, trans-
lation, scaling, shear) to align the point correspondences found in (1)

(3) apply the transformation from (2) to the moving point cloud

These steps are repeated until the root mean squared point-to-point distances from (1)
converge.

The coherent point drift (CPD) algorithm was created by Myronenko and Song (Myronenko
& Song, 2010) to overcome many of the limitations of ICP and other previous registration
methods (Besl & McKay, 1992; Chen & Medioni, 1992; Fitzgibbon, 2003; Rusinkiewicz &
Levoy, 2001). Namely, these other methods did not necessarily generalize to dimensions greater
than 3 and they were prone to errors such as noise, outliers, or missing points. The CPD
algorithm is a probabilistic multidimensional algorithm that is robust and works for both rigid
and non-rigid registration. In CPD the moving point cloud is modelled as a Gaussian Mixture
Model (GMM) and the fixed point cloud is treated as observations from the GMM. The optimal
transformation parameters maximize the Maximum Likelihood / Maximum A Posteriori (MAP)
estimation that the observed point cloud is drawn from the GMM. A key point of the CPD
algorithm is that it forces the points to move coherently by preserving topological structure.
The CPD algorithm is also an iterative algorithm that iterates between an expectation (E)
step and a maximization (M) step until convergence is achieved. The E-step estimates the
posterior probability distributions of the GMM centroids (moving points) given the data (fixed
points) then the M-step updates the transformation to maximize the posterior probability that
the data belong to the GMM distributions. The E- and M-steps are iterated until convergence.
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Statement of need

Due to the robustness and the broad array of uses for the CPD algorithm the original CPD
paper has currently (March 2022) been referenced >2000 times. The CPD algorithm is
available in Matlab (The MathWorks Inc., n.d.) and an open-source C++ version has been
implemented (Gadomski, n.d.). However, to the best of our knowledge, no open-source python
version previously existed. In this paper we present a pure NumPy (Harris et al., 2020) version
of the CPD algorithm to enable general use of CPD for the Python community. Furthermore,
the full implementation in NumPy makes the algorithm accessible for others to learn from.
To help in learning, a blog post that coincides with this library has previously been published
(Khallaghi, 2017).

Summary

The PyCPD package implements the CPD algorithm in NumPy. The library itself includes a
module to implement the Expectation Maximization (EM) algorithm. Sub-modules inherit
the EM functionality and implement rigid, affine, and deformable registration using EM. CPD
registration using affine, rigid, and deformable methods all allow for the transformation learned
from CPD to be applied to any point cloud. Thus, it is possible to learn the transformation
on a subset of the points and then apply it to the whole point cloud to reduce computation
time. Finally, the low-rank approximation for deformable registration that was described by
Myronenko and Song (Myronenko & Song, 2010) was implemented. A low rank approximation
of the Gaussian kernel is used to reduce computation time and has the added benefit of
regularizing the non-rigid deformation.
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Figure 1: Visualization of the 3D rigid registration from the examples included in the library. Each panel
represents a different iteration in the registration process. The Q parameter is the objective function that
is optimized using the EM-algorithm during registration.
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Examples of how to use the PyCPD algorithm are included in the package, Figure 1 displays
the visualization corresponding with a 3D rigid registration example. Examples are available
for 2D and 3D versions of all registration methods (rigid, affine, deformable). Examples of how
to use the low-rank approximation as well as how to use a sub-set of the points for registration
are also included in the examples.
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