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Summary
PoUnce (Propagation of Uncertainties) is a Python framework for fully automatized runs
of non-intrusive forward uncertainty quantification (UQ) simulations on high performance
computers.

In UQ, some input parameters are not known precisely, but are uncertain with a given random
distribution. In non-intrusive UQ methods, a standard simulation model is evaluated many
times with different input parameter values and the model outputs are post-processed to obtain
information about the output quantity of interest (QoI). In the Multilevel Monte Carlo (Giles,
2008; Heinrich, 2001) and Multifidelity Monte Carlo (Peherstorfer et al., 2016, 2018) methods,
different models with vastly different cost and fidelity are combined. The number of evaluations
with each model is usually determined adaptively and iteratively at simulation runtime.

PoUnce enables UQ simulations with a computational cost that requires high performance
computing (HPC) clusters. It serves as a connecting piece between UQ methods, simulation
codes, and cluster software. The framework is designed to generate simulation input for each
single model evaluation, schedule and run all model evaluations on the cluster, and post-process
their results. It can be easily adapted to individual needs, such as new means of interaction
with different baseline simulation codes.

Three UQ methods are currently implemented: the multilevel Monte Carlo method, the
multifidelity Monte Carlo method, and the non-intrusive polynomial chaos method.

Statement of need
Uncertainty quantification has become a central tool over the last years to increase reliability in
numerical simulations across a wide range of scientific fields. It captures uncertain simulation
input data as a potential source of error and quantifies its effect on the simulation output.

There are already several UQ software packages, such as the Dakota toolbox (Adams et
al., 2014) as the most prominent, and others such as the UQ toolkit (B. Debusschere et
al., 2017; B. J. Debusschere et al., 2004), UQpy (Olivier et al., 2020), PyMLMC (Sukys et
al., 2017), ChaosPy (Feinberg & Langtangen, 2015), UQLab (Marelli & Sudret, 2014), and
UQit (Rezaeiravesh et al., 2021). These existing packages often include a large variety of
UQ methods, but most do not provide an integrated framework for fully automatized UQ
runs. Some provide basic scheduling capabilities, which entail, however, several performance
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bottlenecks, as outlined below. PoUnce closes this gap and provides the following capabilities,
which sets it apart from other software:

• Integration and automatization: A large-scale UQ simulation involves many individual
steps, which are usually carried out separately by hand: stochastic input generation for
sample simulations, determining the required HPC resources, interaction with a HPC
scheduler, extracting post-processed quantities of interest from the sample simulations
and stochastic evaluation. In some methods, these steps even have to be carried out
several times in an iterative loop. Unlike with other packages, PoUnce fully automatizes
these runs, such that they can be executed with one single command.

• Efficiency on HPC clusters: Non-intrusive UQ simulations consist of large numbers of
smaller sample simulations. This is particularly the case in Multilevel and Multifidelity
Monte Carlo simulations, where the cost between the computationally least and most
expensive sample simulations can differ by many orders of magnitude. HPC clusters
are not designed for this kind of applications, which entails performance bottlenecks,
if no measures are taken to prevent them. This includes I/O bottlenecks due to very
large numbers of relatively small files, as well as sub-optimal job-internal scheduling
and idle times. PoUnce overcomes these issues by grouping large numbers of sample
simulations into a common program execution with a common file I/O. Furthermore,
in the interaction with the HPC scheduler, separate large-scale compute jobs are used
for sample simulations of similar size, and post-processing is performed outside of these
large compute jobs. This makes internal scheduling much more efficient and reduces idle
times. Details can be found in the code documentation.

• Potential for extension: The modularity of PoUnce together with its very compact source
code lowers the threshold to extend the code and adapt it to every users’ individual
needs. This includes adding adapters to new source codes, adapting interaction with
new HPC clusters, and adding new UQ methods. Since users base UQ simulations on
their own baseline codes and use different clusters, this modularity and extensibility is
vital for PoUnce’s applicability.

Research based on PoUnce
Studies on uncertainty quantification for cavity aeroacoustics (Kuhn et al., 2019) as well as
on hp-MLMC methods (Beck et al., 2020) are based on earlier versions of this software. A
publication on uncertainty quantification for iced airfoil performance based on a recent version
of the software is currently in preparation.
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