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Summary
Constraint Programming (CP) is a powerful programming paradigm for solving combinatorial
search problems (Rossi et al., 2006). CP is at the intersection of artificial intelligence, computer
science, operations research, and many other fields. One of the strengths of the paradigm is
the wide variety of constraints it offers. CP is both a rich declarative language for describing
combinatorial problems and a set of algorithms and techniques for solving them automatically.

Choco-solver is Java library for constraint programming which was created in the early 2000s.
Since then, the library has evolved a great deal, but ease of use has always been a guiding
principle in its development. The Choco-solver API is designed to reduce entry points to a
minimum and thus simplifies modelling for users. The wide variety of constraints available
allows the user to describe his problem as naturally as possible. The black-box approach
to solving allows everyone to focus on modelling. However, Choco-solver is also open and
modifiable. The implementation of new constraints (Ouellet & Quimper, 2022) or strategies for
exploring the search space (Fages & Prud’Homme, 2017; Li et al., 2021) is therefore possible.

As a result, Choco-solver is used by the academics for teaching and research, on the other
hand it is used by the industry to solve real-world problems.

CP in a nutshell
Constraint programming provides not only a declarative way for users to describe discrete
problems, but also techniques for solving them automatically. In that sense, it is very close
to integer linear programming or Boolean satisfaction but is distinguished from them with
its high-level modeling language and expressiveness. Actually, one of the richness’s of the
paradigm lies in the wide variety of constraints it proposes, which are also central to the solving
stage. Thus, the objective of CP is twofold: firstly to offer a rich declarative language to
describe a combinatorial problem, and secondly to provide techniques for solving the problem
automatically. In standard use, a user states a problem using variables, their domains (possible
values for each variable), and constraints which are called predicates that must hold on the
variables. The wide variety of constraints available allows the users to describe their problem
as naturally as possible. Each constraint ensures that it holds, otherwise a propagator filters
the values that prevent the satisfiability. It is the combination of the selected constraints
that defines the problem. The problem is solved by alternating space reduction (usually by a
depth-first search) and propagation, thus ensuring the completeness of the approach. This
standard usage can be extended in different ways, for example, by hybridisation with local
search, Boolean satisfiability, or linear programming techniques.
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Statement of need
For constraint programming to be used successfully, it is essential to have a library that
incorporates the latest advances in the field, while ensuring reliability, performance, and
responsiveness. This was also the motivation for the creation of Choco-solver: Providing
state-of-the-art algorithms and high resolution performance while offering ease of use and
development, all in a free and open-source library.

Achievement
With 20 years of development, Choco-solver is now a stable, flexible, extensible, powerful, and
user-friendly library. There is a community of users and contributors who actively participate in
improving the library. In addition, Choco-solver relies on software quality standards (unit and
performance tests, continuous integration, code review, etc.) and frequent updates are made.
Finally, the choice of Java as programming language makes the integration of the library simple
into both academic and industrial projects.

Features and Functionality

Modeling
Choco-solver comes with the commonly used types of variables: Integer variables, Boolean
variables, set variables (Gervet, 1997), graph variables (Dooms et al., 2005; Fages, 2015), and
real variables. Views (Justeau-Allaire & Prud’homme, 2022; Schulte & Tack, 2005) but also
arithmetical, relational and logical expressions are supported.

Up to 100 constraints are provided from classic ones, such as arithmetical constraints, to
must-have global constraints such as AllDifferent (Régin, 1994) or Cumulative (Aggoun &
Beldiceanu, 1993), and include less common even though useful ones such as Tree (Beldiceanu
et al., 2005) or StableKeySort (Beldiceanu et al., 2015). In many cases, the Choco-solver

API provides various options in addition to the default signature – corresponding to a robust
implementation – of a constraint. This allows users to experiment alternative approaches and
tune the model to its instance. The users may also pick some existing propagators to compose
a new constraint or create their own one in a straightforward way by implementing a filtering
algorithm and a satisfaction checker. Many models are available on the Choco-solver website
as modelling tutorials.

Solving
Choco-solver has been carefully designed to offer wide range of resolution configurations
and good solving performances. Backtrackable primitives and structures are based on trailing
(Aggoun & Beldiceanu, 1990; Reischuk et al., 2009). The propagation engine deals with seven
priority levels (Prud’homme, Lorca, Douence, et al., 2014; Schulte & Stuckey, 2008) and
manages either fine or coarse grain events which enables to get efficient incremental constraint
propagators.

The search algorithm relies on three components Propagate, Learn, and Move (Jussien &
Lhomme, 2002). Such a generic search algorithm is then instantiated to depth-first search,
large neighbourhood search (Prud’homme, Lorca, & Jussien, 2014; Shaw, 1998), limited
discrepancy search (Harvey & Ginsberg, 1995), depth-bounded discrepancy search (Walsh,
1997) or hybrid breadth-first search (Allouche et al., 2015).

The search process can also be greatly improved by various built-in search strategies such as
dom/wdeg (Boussemart et al., 2004) and its ca-cd variant (Wattez et al., 2019), activity-based
search (Michel & Van Hentenryck, 2012), failure-based searches (Li et al., 2021), bound-impact
value selector (Fages & Prud’Homme, 2017), first-fail (Haralick & Elliott, 1979), and many
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others. Standard restart policies are also available, to take full advantage of the learning
strategies. Problem-adapted search strategies are also supported.

One can solve a problem by

• simply checking satisfaction
• finding one or all solutions
• optimizing one or more objectives
• solving on one or more thread.

The search process itself is observable and extensible.

Community tools integration
Several useful extra features are also available such as parsers to XCSP3 format and MiniZinc
format. Choco-solver is also embedded in PyCSP3, a Python library for modeling and solving
combinatorial constrained problems. In addition to offering alternatives to modelling in Java, it
also allows participation in the two major constraint solver competitions : MiniZinc Challenge
and XCSP3 Competition.

Finally, although it is originally designed to solve discrete mathematical problems, Choco-

solver also supports natively real variables and constraints, and relies on Ibex-lib to solve the
continuous part of the problems (Fages et al., 2013). Equally, a Boolean satisfaction solver
(based on MiniSat) is integrated to offer better performance on logical constraints.

These aspects consolidate the place of Choco-solver as an important tool in the CP community.

Note that there are a couple of other Java constraint solvers of equivalent maturity, like JaCoP
and ACE. Although the performances of these tools are direclty comparable, they are mainly
distinguished by the functionalities in terms of modelling and resolution. Among the most
noteworthy, Choco-solver allows integrating constraints which are based on graph variables
or real variables, or it can parse both MiniZinc and XCSP3 input files.

Industrial use
Choco-solver is used by the industry to solve many real-world problems, such as cryptanalysis
(Delaune et al., 2021), construction planning (Cañizares et al., 2022), automated testing
and debugging (Le et al., 2021), scheduling (Lorca et al., 2016), level design (Smith et al.,
2011), placement service (Ait Salaht et al., 2019) and many others. In the Railway industry,
Choco-solver is used to optimize the rail traffic of French train stations, on a daily basis. It
is also used at a higher level to run simulations for capacity and maintenance planning. The
underlying mathematical problems, involving multi-objective functions with millions of variables
and constraints, are solved within seconds by the solver. In the defense sector, Choco-solver
is used for various applications. One publicly known is the long-term maintenance planning of
the Mirage 2000 fleet (Grazzini, 2019). This planning and scheduling problem includes various
capacity constraints, load balancing, and mission covering in an over-constrained environment.
A fleet of hundred aircraft can be planned by Choco-solver for the next fifteen years within
a few minutes. Another type of industrial application of Choco-solver is Configuration
(Charpentier et al., 2021) where the solver is used to solve dynamical constraint models. The
underlying mathematical problems are generally simpler than the ones in planning applications
and an optimal result is expected within milliseconds. This occurs in quotation systems for
sales automation, but also design automation, and system configuration.

In most of those cases, experts set advanced solution techniques, such as specific search
strategies, Large Neighborhood Search or ad hoc global constraints, in order to improve
their model. Choco-solver is flexible enough to allow such fine-tuning to tackle challenging
problems. With the right approach, Choco-solver can come up with nearly optimal solutions
in a very short time.
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