
Choco-solver: A Java library for constraint
programming
Charles Prud’homme 1¶ and Jean-Guillaume Fages 2

1 TASC, IMT-Atlantique, LS2N-CNRS, Nantes, France 2 COSLING S.A.S., Nantes, France ¶
Corresponding author

DOI: 10.21105/joss.04708

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @skadio
• @ozgurakgun

Submitted: 13 July 2022
Published: 12 October 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Constraint Programming (CP) is a powerful programming paradigm for solving combinatorial
search problems (Rossi et al., 2006). CP is at the intersection of artificial intelligence, computer
science, operations research, and many other fields. One of the strengths of the paradigm is
the wide variety of constraints it offers. CP is both a rich declarative language for describing
combinatorial problems and a set of algorithms and techniques for solving them automatically.

Choco-solver is Java library for constraint programming which was created in the early 2000s.
Since then, the library has evolved a great deal, but ease of use has always been a guiding
principle in its development. The Choco-solver API is designed to reduce entry points to a
minimum and thus simplifies modelling for users. The wide variety of constraints available
allows the user to describe his problem as naturally as possible. The black-box approach
to solving allows everyone to focus on modelling. However, Choco-solver is also open and
modifiable. The implementation of new constraints (Ouellet & Quimper, 2022) or strategies for
exploring the search space (Fages & Prud’Homme, 2017; Li et al., 2021) is therefore possible.

As a result, Choco-solver is used by the academics for teaching and research, on the other
hand it is used by the industry to solve real-world problems.

CP in a nutshell
Constraint programming provides not only a declarative way for users to describe discrete
problems, but also techniques for solving them automatically. In that sense, it is very close
to integer linear programming or Boolean satisfaction but is distinguished from them with
its high-level modeling language and expressiveness. Actually, one of the richness’s of the
paradigm lies in the wide variety of constraints it proposes, which are also central to the solving
stage. Thus, the objective of CP is twofold: firstly to offer a rich declarative language to
describe a combinatorial problem, and secondly to provide techniques for solving the problem
automatically. In standard use, a user states a problem using variables, their domains (possible
values for each variable), and constraints which are called predicates that must hold on the
variables. The wide variety of constraints available allows the users to describe their problem
as naturally as possible. Each constraint ensures that it holds, otherwise a propagator filters
the values that prevent the satisfiability. It is the combination of the selected constraints
that defines the problem. The problem is solved by alternating space reduction (usually by a
depth-first search) and propagation, thus ensuring the completeness of the approach. This
standard usage can be extended in different ways, for example, by hybridisation with local
search, Boolean satisfiability, or linear programming techniques.

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

1

https://orcid.org/0000-0002-4546-9027
https://orcid.org/0000-0001-5638-4777
https://doi.org/10.21105/joss.04708
https://github.com/openjournals/joss-reviews/issues/4708
https://github.com/chocoteam/choco-solver
https://doi.org/10.5281/zenodo.7185962
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/skadio
https://github.com/ozgurakgun
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04708


Statement of need
For constraint programming to be used successfully, it is essential to have a library that
incorporates the latest advances in the field, while ensuring reliability, performance, and
responsiveness. This was also the motivation for the creation of Choco-solver: Providing
state-of-the-art algorithms and high resolution performance while offering ease of use and
development, all in a free and open-source library.

Achievement
With 20 years of development, Choco-solver is now a stable, flexible, extensible, powerful, and
user-friendly library. There is a community of users and contributors who actively participate in
improving the library. In addition, Choco-solver relies on software quality standards (unit and
performance tests, continuous integration, code review, etc.) and frequent updates are made.
Finally, the choice of Java as programming language makes the integration of the library simple
into both academic and industrial projects.

Features and Functionality

Modeling
Choco-solver comes with the commonly used types of variables: Integer variables, Boolean
variables, set variables (Gervet, 1997), graph variables (Dooms et al., 2005; Fages, 2015), and
real variables. Views (Justeau-Allaire & Prud’homme, 2022; Schulte & Tack, 2005) but also
arithmetical, relational and logical expressions are supported.

Up to 100 constraints are provided from classic ones, such as arithmetical constraints, to
must-have global constraints such as AllDifferent (Régin, 1994) or Cumulative (Aggoun &
Beldiceanu, 1993), and include less common even though useful ones such as Tree (Beldiceanu
et al., 2005) or StableKeySort (Beldiceanu et al., 2015). In many cases, the Choco-solver

API provides various options in addition to the default signature – corresponding to a robust
implementation – of a constraint. This allows users to experiment alternative approaches and
tune the model to its instance. The users may also pick some existing propagators to compose
a new constraint or create their own one in a straightforward way by implementing a filtering
algorithm and a satisfaction checker. Many models are available on the Choco-solver website
as modelling tutorials.

Solving
Choco-solver has been carefully designed to offer wide range of resolution configurations
and good solving performances. Backtrackable primitives and structures are based on trailing
(Aggoun & Beldiceanu, 1990; Reischuk et al., 2009). The propagation engine deals with seven
priority levels (Prud’homme, Lorca, Douence, et al., 2014; Schulte & Stuckey, 2008) and
manages either fine or coarse grain events which enables to get efficient incremental constraint
propagators.

The search algorithm relies on three components Propagate, Learn, and Move (Jussien &
Lhomme, 2002). Such a generic search algorithm is then instantiated to depth-first search,
large neighbourhood search (Prud’homme, Lorca, & Jussien, 2014; Shaw, 1998), limited
discrepancy search (Harvey & Ginsberg, 1995), depth-bounded discrepancy search (Walsh,
1997) or hybrid breadth-first search (Allouche et al., 2015).

The search process can also be greatly improved by various built-in search strategies such as
dom/wdeg (Boussemart et al., 2004) and its ca-cd variant (Wattez et al., 2019), activity-based
search (Michel & Van Hentenryck, 2012), failure-based searches (Li et al., 2021), bound-impact
value selector (Fages & Prud’Homme, 2017), first-fail (Haralick & Elliott, 1979), and many

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

2

https://choco-solver.org/tutos/
https://doi.org/10.21105/joss.04708


others. Standard restart policies are also available, to take full advantage of the learning
strategies. Problem-adapted search strategies are also supported.

One can solve a problem by

• simply checking satisfaction
• finding one or all solutions
• optimizing one or more objectives
• solving on one or more thread.

The search process itself is observable and extensible.

Community tools integration
Several useful extra features are also available such as parsers to XCSP3 format and MiniZinc
format. Choco-solver is also embedded in PyCSP3, a Python library for modeling and solving
combinatorial constrained problems. In addition to offering alternatives to modelling in Java, it
also allows participation in the two major constraint solver competitions : MiniZinc Challenge
and XCSP3 Competition.

Finally, although it is originally designed to solve discrete mathematical problems, Choco-

solver also supports natively real variables and constraints, and relies on Ibex-lib to solve the
continuous part of the problems (Fages et al., 2013). Equally, a Boolean satisfaction solver
(based on MiniSat) is integrated to offer better performance on logical constraints.

These aspects consolidate the place of Choco-solver as an important tool in the CP community.

Note that there are a couple of other Java constraint solvers of equivalent maturity, like JaCoP
and ACE. Although the performances of these tools are direclty comparable, they are mainly
distinguished by the functionalities in terms of modelling and resolution. Among the most
noteworthy, Choco-solver allows integrating constraints which are based on graph variables
or real variables, or it can parse both MiniZinc and XCSP3 input files.

Industrial use
Choco-solver is used by the industry to solve many real-world problems, such as cryptanalysis
(Delaune et al., 2021), construction planning (Cañizares et al., 2022), automated testing
and debugging (Le et al., 2021), scheduling (Lorca et al., 2016), level design (Smith et al.,
2011), placement service (Ait Salaht et al., 2019) and many others. In the Railway industry,
Choco-solver is used to optimize the rail traffic of French train stations, on a daily basis. It
is also used at a higher level to run simulations for capacity and maintenance planning. The
underlying mathematical problems, involving multi-objective functions with millions of variables
and constraints, are solved within seconds by the solver. In the defense sector, Choco-solver
is used for various applications. One publicly known is the long-term maintenance planning of
the Mirage 2000 fleet (Grazzini, 2019). This planning and scheduling problem includes various
capacity constraints, load balancing, and mission covering in an over-constrained environment.
A fleet of hundred aircraft can be planned by Choco-solver for the next fifteen years within
a few minutes. Another type of industrial application of Choco-solver is Configuration
(Charpentier et al., 2021) where the solver is used to solve dynamical constraint models. The
underlying mathematical problems are generally simpler than the ones in planning applications
and an optimal result is expected within milliseconds. This occurs in quotation systems for
sales automation, but also design automation, and system configuration.

In most of those cases, experts set advanced solution techniques, such as specific search
strategies, Large Neighborhood Search or ad hoc global constraints, in order to improve
their model. Choco-solver is flexible enough to allow such fine-tuning to tackle challenging
problems. With the right approach, Choco-solver can come up with nearly optimal solutions
in a very short time.

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

3

http://xcsp.org/
https://www.minizinc.org/resources.html
https://www.minizinc.org/resources.html
https://pypi.org/project/pycsp3/
https://www.minizinc.org/challenge.html
http://www.xcsp.org/competitions/
http://www.ibex-lib.org/
http://minisat.se/Main.html
https://github.com/radsz/jacop
https://github.com/xcsp3team/ace
https://doi.org/10.21105/joss.04708


Acknowledgements
We acknowledge contributions from (in alphabetical order) Hadrien Cambazard, Arthur Godet,
Fabien Hermenier, Narendra Jussien, Dimitri Justeau-Allaire, Tanguy Lapègue, Alexandre
Lebrun, Jimmy Liang, Xavier Lorca, Arnaud Malapert, Guillaume Rochart, João Pedro Schmitt
and Mohamed Wahbi.

References
Aggoun, A., & Beldiceanu, N. (1990). Time stamps techniques for the trailed data in constraint

logic programming systems. In S. Bourgault & M. Dincbas (Eds.), SPLT’90, 8ème séminaire
programmation en logique, 16-18 mai 1990, trégastel, france (pp. 487–510).

Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to Solve Complex Scheduling
and Placement Problems. Mathl. Comput. Modelling, 17 (7), 57–73. https://doi.org/10.
1016/0895-7177(93)90068-A

Ait Salaht, F., Desprez, F., Lebre, A., Prud’homme, C., & Abderrahim, M. (2019). Service
placement in fog computing using constraint programming. 2019 IEEE International
Conference on Services Computing (SCC), 19–27. https://doi.org/10.1109/SCC.2019.
00017

Allouche, D., De Givry, S., Katsirelos, G., Schiex, T., & Zytnicki, M. (2015). Anytime hybrid
best-first search with tree decomposition for weighted CSP. CP 2015 - 21st International
Conference on Principles and Practice of Constraint Programming, 17 p. https://doi.org/
10.1007/978-3-319-23219-5/_2

Beldiceanu, N., Carlsson, M., Flener, P., Lorca, X., Pearson, J., Petit, T., & Prud’Homme, C.
(2015, October). A Modelling Pearl with Sortedness Constraints. Global conference on
artificial intelligence. https://doi.org/10.29007/b4dz

Beldiceanu, N., Flener, P., & Lorca, X. (2005). The tree constraint. In R. Barták &
M. Milano (Eds.), Integration of AI and OR techniques in constraint programming for
combinatorial optimization problems, second international conference, CPAIOR 2005,
prague, czech republic, may 30 - june 1, 2005, proceedings (Vol. 3524, pp. 64–78).
Springer. https://doi.org/10.1007/11493853/_7

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search
by weighting constraints. Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI’2004, Including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, 146–150.

Cañizares, P. C., Estévez-Martín, S., & Núñez, M. (2022). SINPA: SupportINg the automation
of construction PlAnning. Expert Systems with Applications, 190, 116149. https://doi.
org/10.1016/j.eswa.2021.116149

Charpentier, A., Fages, J.-G., & Lapègue, T. (2021). COSLING configurator. ConfWS.

Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., & Prud’homme, C. (2021).
Efficient methods to search for best differential characteristics on SKINNY. In K. Sako
& N. O. Tippenhauer (Eds.), Applied cryptography and network security (pp. 184–207).
Springer International Publishing. https://doi.org/10.1007/978-3-030-78375-4_8

Dooms, G., Deville, Y., & Dupont, P. (2005). CP(Graph): Introducing a Graph Computation
Domain in Constraint Programming. Principles and Practice of Constraint Programming -
CP 2005, 211–225. https://doi.org/10.1007/11564751_18

Fages, J.-G. (2015). On the use of graphs within constraint-programming. Constraints, 20(4),
498–499. https://doi.org/10.1007/s10601-015-9223-9

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

4

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1007/978-3-319-23219-5/_2
https://doi.org/10.1007/978-3-319-23219-5/_2
https://doi.org/10.29007/b4dz
https://doi.org/10.1007/11493853/_7
https://doi.org/10.1016/j.eswa.2021.116149
https://doi.org/10.1016/j.eswa.2021.116149
https://doi.org/10.1007/978-3-030-78375-4_8
https://doi.org/10.1007/11564751_18
https://doi.org/10.1007/s10601-015-9223-9
https://doi.org/10.21105/joss.04708


Fages, J.-G., Chabert, G., & Prud’Homme, C. (2013). Combining finite and continuous solvers
Towards a simpler solver maintenance. The 19th International Conference on Principles and
Practice of Constraint Programming, TRICS’13 Workshop: Techniques foR Implementing
Constraint programming Systems. https://hal.archives-ouvertes.fr/hal-00904069

Fages, J.-G., & Prud’Homme, C. (2017, November). Making the first solution good! ICTAI
2017 29th IEEE International Conference on Tools with Artificial Intelligence. https:
//doi.org/10.1109/ictai.2017.00164

Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation
of a practical language. Constraints, 1(3), 191–244. https://doi.org/10.1007/BF00137870

Grazzini, F. (2019). Airbus and COSLING provide software solution optaforce for
mirage 2000 maintenance. https://www.airbus.com/en/newsroom/press-releases/
2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage

Haralick, R. M., & Elliott, G. L. (1979). Increasing tree search efficiency for constraint
satisfaction problems. Proceedings of the 6th International Joint Conference on Artificial
Intelligence - Volume 1, 356–364. https://doi.org/10.1016/0004-3702(80)90051-X

Harvey, W. D., & Ginsberg, M. L. (1995). Limited discrepancy search. Proceedings of
the 14th International Joint Conference on Artificial Intelligence - Volume 1, 607–613.
ISBN: 978-1-558-60363-9

Jussien, N., & Lhomme, O. (2002). Unifying search algorithms for CSP (Research Report No.
RR0203). EMN.

Justeau-Allaire, D., & Prud’homme, C. (2022). Global domain views for expressive and
cross-domain constraint programming. Constraints An Int. J., 27(1), 1–7. https://doi.
org/10.1007/s10601-021-09324-7

Le, V.-M., Felfernig, A., Tran, T. N. T., Atas, M., Uta, M., Benavides, D., & Galindo, J. (2021).
DirectDebug: A software package for the automated testing and debugging of feature
models. Software Impacts, 9, 100085. https://doi.org/10.1016/j.simpa.2021.100085

Li, H., Yin, M., & Li, Z. (2021). Failure based variable ordering heuristics for solving CSPs
(short paper). In L. D. Michel (Ed.), 27th international conference on principles and
practice of constraint programming, CP 2021, montpellier, france (virtual conference),
october 25-29, 2021 (Vol. 210, pp. 9:1–9:10). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.CP.2021.9

Lorca, X., Prud’homme, C., Questel, A., & Rottembourg, B. (2016). Using constraint
programming for the urban transit crew rescheduling problem. In M. Rueher (Ed.),
Principles and practice of constraint programming (pp. 636–649). Springer International
Publishing. https://doi.org/10.1007/978-3-319-44953-1_40

Michel, L., & Van Hentenryck, P. (2012). Activity-based search for black-box constraint
programming solvers. In N. Beldiceanu, N. Jussien, & É. Pinson (Eds.), Integration of AI
and OR techniques in contraint programming for combinatorial optimzation problems (pp.
228–243). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_15

Ouellet, Y., & Quimper, C.-G. (2022). A MinCumulative resource constraint. In P. Schaus (Ed.),
Integration of constraint programming, artificial intelligence, and operations research (pp.
318–334). Springer International Publishing. https://doi.org/10.1007/978-3-031-08011-1_
21

Prud’homme, C., Lorca, X., Douence, R., & Jussien, N. (2014). Propagation engine prototyping
with a domain specific language. Constraints An Int. J., 19(1), 57–76. https://doi.org/10.
1007/s10601-013-9151-5

Prud’homme, C., Lorca, X., & Jussien, N. (2014). Explanation-based large neighborhood
search. Constraints, 19(4), 339–379. https://doi.org/10.1007/s10601-014-9166-6

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

5

https://hal.archives-ouvertes.fr/hal-00904069
https://doi.org/10.1109/ictai.2017.00164
https://doi.org/10.1109/ictai.2017.00164
https://doi.org/10.1007/BF00137870
https://www.airbus.com/en/newsroom/press-releases/2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage
https://www.airbus.com/en/newsroom/press-releases/2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage
https://doi.org/10.1016/0004-3702(80)90051-X
http://dl.acm.org/citation.cfm?id=1625855.1625935
https://doi.org/10.1007/s10601-021-09324-7
https://doi.org/10.1007/s10601-021-09324-7
https://doi.org/10.1016/j.simpa.2021.100085
https://doi.org/10.4230/LIPIcs.CP.2021.9
https://doi.org/10.1007/978-3-319-44953-1_40
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-031-08011-1_21
https://doi.org/10.1007/978-3-031-08011-1_21
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.21105/joss.04708


Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. Proceed-
ings of the Twelfth National Conference on Artificial Intelligence (Vol. 1), 362–367.
ISBN: 0262611023

Reischuk, R. M., Schulte, C., Stuckey, P. J., & Tack, G. (2009). Maintaining state in
propagation solvers. In I. P. Gent (Ed.), Principles and practice of constraint programming
- CP 2009, 15th international conference, CP 2009, lisbon, portugal, september 20-
24, 2009, proceedings (Vol. 5732, pp. 692–706). Springer. https://doi.org/10.1007/
978-3-642-04244-7/_54

Rossi, F., Beek, P. van, & Walsh, T. (Eds.). (2006). Handbook of constraint programming
(Vol. 2). Elsevier. ISBN: 978-0-444-52726-4

Schulte, C., & Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst., 31(1), 2:1–2:43. https://doi.org/10.1145/1452044.1452046

Schulte, C., & Tack, G. (2005). Views and iterators for generic constraint implementations.
In P. van Beek (Ed.), Principles and practice of constraint programming - CP 2005, 11th
international conference, CP 2005, sitges, spain, october 1-5, 2005, proceedings (Vol. 3709,
pp. 817–821). Springer. https://doi.org/10.1007/11564751/_71

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle
routing problems. In M. J. Maher & J.-F. Puget (Eds.), Principles and practice of
constraint programming - CP98, 4th international conference, pisa, italy, october 26-
30, 1998, proceedings (Vol. 1520, pp. 417–431). Springer. https://doi.org/10.1007/
3-540-49481-2/_30

Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra: Reactive planning and constraint
solving for mixed-initiative level design. IEEE Transactions on Computational Intelligence
and AI in Games, 3(3), 201–215. https://doi.org/10.1109/TCIAIG.2011.2159716

Walsh, T. (1997). Depth-bounded discrepancy search. In Proceedings of IJCAI-97, 1388–1393.

Wattez, H., Lecoutre, C., Paparrizou, A., & Tabary, S. (2019). Refining constraint weighting.
31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019,
Portland, OR, USA, November 4-6, 2019, 71–77. https://doi.org/10.1109/ICTAI.2019.
00019

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 7(78), 4708.
https://doi.org/10.21105/joss.04708.

6

https://doi.org/10.1007/978-3-642-04244-7/_54
https://doi.org/10.1007/978-3-642-04244-7/_54
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1145/1452044.1452046
https://doi.org/10.1007/11564751/_71
https://doi.org/10.1007/3-540-49481-2/_30
https://doi.org/10.1007/3-540-49481-2/_30
https://doi.org/10.1109/TCIAIG.2011.2159716
https://doi.org/10.1109/ICTAI.2019.00019
https://doi.org/10.1109/ICTAI.2019.00019
https://doi.org/10.21105/joss.04708

	Summary
	CP in a nutshell

	Statement of need
	Achievement

	Features and Functionality
	Modeling
	Solving
	Community tools integration

	Industrial use
	Acknowledgements
	References

