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Summary
The development of new materials by computational materials science relies to a large degree
on the prediction of material properties by simulation at different time and length scales. A
common challenge at the atomic scale is the need for large numbers of calculations in order to
sample, e.g., different chemical compositions, different crystal structures or different simulation
settings. Typical examples of the required high-throughput calculations are (i) the sampling
of the combinatorial space of structure and composition for determining the most stable
structure of a mixture of chemical elements, (ii) the generation of a data set for constructing
an interatomic interaction model or (iii) the generation of a data set for inferring properties by
machine learning. Depending on the problem at hand, the number of required calculations
may range from hundreds to millions.

The Python-based framework strucscan provides a robust solution to handle such high-
throughput calculations in an efficient way on compute clusters with a queueing system
or on the local host. The simple and transparent workflow of strucscan loops over a specified
list of crystal structures and chemical compositions and computes a specified list of properties
for each combination. The property calculations are represented as a pipeline of successive,
interdependent steps which can easily be adapted and extended. The data is stored in a
human-readable data-tree with flat hierarchy. strucscan performs a series of scalable and
easily extendable pre-processing and post-processing steps and compiles the results in Python
dictionaries for further evaluation. Data provenance for research-data management and analytics
is realized in terms of the data-tree structure that includes all input files.

The present version of strucscan is tailored to the calculation of frequently needed material
properties with widely used atomistic simulation codes on common scheduling systems. The
implemented interfaces particularly support the VASP software package (Kresse & Furthmüller,
1996a), (Kresse & Furthmüller, 1996b), (Kresse & Joubert, 1999) for density-functional theory
(DFT) calculations on SunGridEngine (Gentzsch, 2001) and slurm (Jette et al., 2002) scheduler
systems. With the well-defined and documented interfaces, strucscan can be extended, with
basic programming skills, with additional scheduling systems, simulation codes and material
properties at the atomic scale as well as other simulation scales.

Statement of need
The need for high-throughput calculations in computational materials science have lead to
the development of several workflow managers and high-throughput frameworks ((Ong et al.,
2013), (Hammerschmidt et al., 2013), (Mathew et al., 2017), (Janssen et al., 2019), (Huber
et al., 2020), (Gjerding et al., 2021)). These software packages offer numerous features but
often require a rather complex infrastructure with, e.g., external workflow managers (Jain et
al., 2015) for interaction with compute clusters or SQL databases for storing results. Moreover,
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it is often not straightforward to extend these large software packages and to tailor them for
particular needs. In many practical cases, the repetitive execution of the tasks does not benefit
from a large toolbox of features, or from a predefined database concept, but rather needs a
concise and transparent driver that can be customized to the particular high-throughput task
and the specific data management solution. strucscan is a lightweight driver with focus on
atomistic simulations and offers the following features:

• Transparency: lean and lightweight Python code with transparent and robust handling
of tasks and infrastructure

• Dependencies: no external workflow managers or database systems required, only NumPy
and ASE (Larsen et al., 2017)

• Customization: straight-forward extension to further tasks and interfaces (simulation
codes, schedulers) with only low-level programming experience

• Pipelining: simple and transparent realization of task sequences and task dependencies
• Restarts: seamless restart capabilities due to coherent interlinking of workflow organisation

and data-tree
• Post-processing: customizable post-processing within workflow with results stored in

Python dictionaries for further post-processing
• Data provenance: human-readable data-tree with flat hierarchy and storage of all input

files for metadata generation

strucscan
The strucscan framework is based on Python 3.6+ and requires the Atomic Simulation
Environment (Larsen et al., 2017) and NumPy. It is available from a git repository and can be
installed from there or with pip. Detailed documentation and usage examples of strucscan
are available on readthedocs. High-throughput calculations with strucscan can be started
from the command line, from a Python shell or from a Juypter notebook as shown in the
examples in the strucscan git repository. The present version is focused on high-throughput
DFT calculations on computer clusters with SunGridEngine (Gentzsch, 2001) and slurm (Jette
et al., 2002) scheduler systems. Future extension to further simulation codes are planned.

The basic workflow of strucscan is visualized in Figure 1 and includes the following steps:

Figure 1: Workflow of the strucscan framework: the process starts with creating a list of jobs by looping
over structures and pipelining the properties. Any required dependencies will be resolved and inserted
into the list of jobs. Depending on the status of the job, the job is monitored if running (or queued), files
will be created if necessary, and errors will be handled automatically. If the job is finished successfully,
data is collected and a simple post-processing is conducted.
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1. Input from user

The user specifies the materials simulation software and the usage of the scheduler system or
localhost. The input information includes the chemical elements with the required parameter
files, the structure files and the tasks to be performed. The currently implemented tasks
are related to materials properties and include, e.g., the relaxation of the structure or the
computation of the equilibrium lattice constant. The input can be organized in a YAML file
format for starting strucscan from the command line or in a Python dictionary for starting
strucscan from a python shell or a Jupyter Notebook.

2. Initialization of workflow

Based on the input from the user, strucscan generates a list of all necessary calculations by
looping over the list of given structures and the list of tasks. In the context of materials
properties, a common task is the full relaxation of a crystal structure from an initial guess of
the atomic positions and simulation cell to a configuration that takes a minimum total energy
in a DFT calculation. This task is often followed by a second task where the total energy
is computed with DFT for a series of volumes of the simulation cell around the equilibrium
volume and a subsequent fit of this energy-volume data to obtain the minimum with high
accuracy. For such interdependent tasks, strucscan uses a pipelining concept that converts the
final structure of one task to the initial structure of a subsequent task. I.e. each structure is
pipelined through the list of properties. The pipelines are also treated as tasks and can easily
be modified by the user. In this way the user can operate with higher-level pipeline names
and strucscan will automatically insert all required tasks along a pipeline. Continuing with the
above example, strucscan provides a pipeline ‘EOS’ that collects the values of the equilibrium
volume after fitting the energy-volume data after computing the energy-volume data after
performing a full relaxation. The result of the workflow initialization is a list of all necessary
calculations, ‘jobs’, that is directly reflected in the structure of the data-tree. A restart of
strucscan with the same user input will find the existing data-tree and continue seamlessly
after the last finished calculation.

3. Execution of tasks

After the initialization, strucscan identifies the status of each job by checking if the expected
folders exist in the data-tree, if it is waiting or running in the scheduler, if it is finished or if an
error occurred. Depending on the status, strucscan will create the necessary input files, start
the calculation or handle an error. This stage is repeated until the list of jobs is complete. In
order to avoid uncontrolled restarts, a job is declared as finished if error handling has been
attempted unsuccessfully for three times.

4. Post-processing of results

At the end of each workflow cycle, strucscan starts post-processing of the calculation results.
It will collect the central results from the data-tree and compile them in Python dictionaries in
JSON format for further post-processing or for database upload. In the context of materials
properties the post-processing by strucscan includes, e.g., the fitting of energy-volume data to
an equation of state and the compilation of the resulting equilibrium volume, binding energy
and bulk modulus in one JSON file for all given structures of a given chemical element or
compound.
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