
btllib: A C++ library with Python interface for
efficient genomic sequence processing
Vladimir Nikolić 1,2¶, Parham Kazemi1,2, Lauren Coombe 1, Johnathan
Wong1, Amirhossein Afshinfard 1,2, Justin Chu1,2, René L. Warren 1, and
Inanç Birol 1

1 Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada 2
Bioinformatics Graduate Program, The University of British Columbia, Vancouver, BC, Canada ¶
Corresponding author

DOI: 10.21105/joss.04720

Software
• Review
• Repository
• Archive

Editor: Frederick Boehm
Reviewers:

• @pjb7687
• @MaximLippeveld

Submitted: 04 August 2022
Published: 04 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Bioinformaticians often do not have software engineering training or background, and software
quality is not the top priority of research groups due to limited time and funding (Georgeson et
al., 2019). Additionally, one-off scripts or code is frequently written to perform a specific task
instead of reusing existing code. This could be because the pre-existing computer programming
code is either not well written, not widely available, insufficiently documented, inefficient, or not
general enough. This practice leads to lower quality and non-reusable code. As bioinformatics
analyses are increasingly complex and deal with ever more data, high quality code is needed
to handle the complexities of the analyses reliably and productively. The solution to this is
well designed and documented libraries. For example, SeqAn (Reinert et al., 2017) is a C++
library that implements algorithms and data structures commonly used in bioinformatics. Not
all programmers are well versed in C++, so for users of widely used and accessible higher level
programming languages such as Python, Biopython (Cock et al., 2009) is available as a set
of Python modules with implementations of commonly needed algorithms. Here, we present
the btllib library as an addition to this ecosystem with the goal of providing highly efficient,
scalable, and ergonomic implementations of bioinformatics algorithms and data structures.

Statement of need
btllib is implemented in C++ with Python bindings available for a high level interface and
ease of use. What sets it apart from other libraries is its focus on specialized algorithms with
efficiency and scalability in mind as its origins are sequence processing for large genomes. The
goal of btllib is not to compete, but to complement other available libraries.

btllib has helped enable bioinformatics scientific publications, including ntJoin (Coombe et al.,
2020) and LongStitch (Coombe et al., 2021). Thanks to its focus on scalable algorithms and
efficient implementation, btllib is a valuable tool for genomic applications, especially in the
context of large genomes.

Design & implementation
The library has the implementation of the following algorithms and data structures:

• ntHash A very efficient DNA/RNA rolling hash function, an order of magnitude faster
than the best performing alternatives in typical use cases. The implementation includes
hashing sequences with spaced seeds as well as feeding arbitrary nucleotides for implicit

Nikolić et al. (2022). btllib: A C++ library with Python interface for efficient genomic sequence processing. Journal of Open Source Software,
7(79), 4720. https://doi.org/10.21105/joss.04720.

1

https://orcid.org/0000-0002-2992-9935
https://orcid.org/0000-0002-7518-2326
https://orcid.org/0000-0002-6875-4939
https://orcid.org/0000-0002-9890-2293
https://orcid.org/0000-0003-0950-7839
https://doi.org/10.21105/joss.04720
https://github.com/openjournals/joss-reviews/issues/4720
https://github.com/bcgsc/btllib
https://doi.org/10.5281/zenodo.7275416
https://fboehm.us
https://orcid.org/0000-0002-1644-5931
https://github.com/pjb7687
https://github.com/MaximLippeveld
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04720


hash-based graph traversal. Code adapted from the ntHash publication (Mohamadi et
al., 2016). The following example produces 4 hashes per 6-mer for the seq sequence:

std::string seq = ”ACTAGCTATGC”;

int hash_num = 4;

int k = 6;

btllib::NtHash nthash(seq, hash_num, k);

while (nthash.roll()) {

for (int i = 0; i < hash_num; i++) {

std::cout << nthash.hashes()[i] << '\n';

}

}

• Bloom filter A generic Bloom filter data structure. Thread safe and allows insertion of
an array of hash values per element. Allows saving to disk with the associated metadata.

• Counting Bloom filter A Bloom filter data structure that allows counting the number of
times an element has been inserted. Allows multithreaded insertion of elements while
minimizing the effect of race conditions and preserving data integrity at a statistical
level. This design was motivated by the need to maximize performance, as a fully thread
safe counting Bloom filter would be unnecessarily slow. Figure 1 A) shows the effect
of race condition mitigation. Allows saving to disk with the associated metadata. The
following example stores all 6-mers from seq into the counting Bloom filter and then
checks for their presence:

std::string seq = ”ACTAGCTATGC”;

int hash_num = 4;

int k = 6;

int bytes = 1024;

btllib::KmerCountingBloomFilter8 kcbf(bytes, hash_num, k);

kcbf.insert(seq);

assert(kcbf.contains(seq) == seq.size() - k + 1);

• Multi-index Bloom filter A Bloom filter data structure that associates integer indices/IDs
with the inserted elements. Like the counting Bloom filter, the race conditions are
minimized for multithreaded insertion. Code adapted from the Multi-index Bloom filter
publication (Chu et al., 2020).

• Indexlr An optimized and versatile minimizer calculator. For a given sequence file, Indexlr
produces minimizer hash values given a k-mer size and a window size. Optionally outputs
minimizer sequence, sequence length, position, and strand. The library also includes an
indexlr executable that produces minimizers from a given sequence file. Code adapted
from the Physlr publication (Afshinfard et al., 2022).

• Sequence I/O SeqReader and SeqWriter classes provide efficient and flexible I/O for
sequence files. SeqReader is capable of reading sequences in different formats such as
FASTA and FASTQ including multiline, and SAM format. The format is automatically
detected even without file extension or if the data is piped. SeqReader also supports
multiple threads to read in parallel, each thread receiving a copy of the sequence that can
be modified as well as ad-hoc compression and decompression of the data in common
formats (gzip, bzip2, xz, lrzip, zip, 7zip). Figure 1 B) shows the scalability of using
multiple threads to load and process sequences. The following example demonstrates the
ease of use of SeqReader in a multithreaded environment using OpenMP. The sequences
are loaded from my_reads.fq.gz in a mode optimized for long reads:

int flags = btllib::SeqReader::Flag::LONG_MODE;

btllib::SeqReader reader(”my_reads.fq.gz”, flags);

#pragma omp parallel

for (const auto record : reader) {

std::cout << record.seq << '\n';

Nikolić et al. (2022). btllib: A C++ library with Python interface for efficient genomic sequence processing. Journal of Open Source Software,
7(79), 4720. https://doi.org/10.21105/joss.04720.

2

https://doi.org/10.21105/joss.04720


}

• Utility functions Various functions for common tasks such as reverse complementation,
string manipulation, and logging.

Figure 1: A) The average counter difference between 3GiB Counting Bloom Filters with single threaded
and multithreaded insertion of k-mers of 50,000 long reads. The single threaded version does not suffer
from race conditions and thus has the ground truth. The more threads we add the more visible is the
effect of race conditions, but thanks to the mitigation mechanism, the differences are small. B) Wall-clock
time it takes to read in and run a simulated workload of 2ms per read on 250,000 long reads. The blue
data points use efficient sequence reading code, kseq (Li, 2016), surrounded by a naive implementation of
a critical section, while the orange data points use SeqReader. Unlike the critical section implementation
which plateaus after a number of threads, SeqReader scales well and keeps benefitting even from higher
number of threads. SeqReader performs particularly well if used by multiple threads when loading long
reads, as their length increases the time spent in I/O and thus in the critical section as well.

Acknowledgements
This work was supported by Genome BC and Genome Canada [281ANV]; the National Institutes
of Health [2R01HG007182-04A1]; the Canadian Institutes of Health Research (CIHR) [PJT-
183608]; and the Natural Sciences and Engineering Research Council of Canada. The content
of this paper is solely the responsibility of the authors, and does not necessarily represent the
official views of the funding organizations.

References
Afshinfard, A., Jackman, S. D., Wong, J., Coombe, L., Chu, J., Nikolic, V., Dilek, G., Malkoç,

Y., Warren, R. L., & Birol, I. (2022). Physlr: Next-generation physical maps. DNA, 2(2),
116–130. https://doi.org/10.3390/dna2020009

Chu, J., Mohamadi, H., Erhan, E., Tse, J., Chiu, R., Yeo, S., & Birol, I. (2020). Mismatch-
tolerant, alignment-free sequence classification using multiple spaced seeds and multiindex
bloom filters. Proceedings of the National Academy of Sciences, 117(29), 16961–16968.
https://doi.org/10.1073/pnas.1903436117

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg,
I., Hamelryck, T., Kauff, F., Wilczynski, B., & Hoon, M. J. L. de. (2009). Biopython:
freely available Python tools for computational molecular biology and bioinformatics.
Bioinformatics, 25(11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163

Nikolić et al. (2022). btllib: A C++ library with Python interface for efficient genomic sequence processing. Journal of Open Source Software,
7(79), 4720. https://doi.org/10.21105/joss.04720.

3

https://doi.org/10.3390/dna2020009
https://doi.org/10.1073/pnas.1903436117
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.21105/joss.04720


Coombe, L., Li, J. X., Lo, T., Wong, J., Nikolic, V., Warren, R. L., & Birol, I. (2021).
LongStitch: High-quality genome assembly correction and scaffolding using long reads.
BMC Bioinformatics, 22(1). https://doi.org/10.1186/s12859-021-04451-7

Coombe, L., Nikolić, V., Chu, J., Birol, I., & Warren, R. L. (2020). ntJoin: Fast and lightweight
assembly-guided scaffolding using minimizer graphs. Bioinformatics, 36(12), 3885–3887.
https://doi.org/10.1093/bioinformatics/btaa253

Georgeson, P., Syme, A., Sloggett, C., Chung, J., Dashnow, H., Milton, M., Lonsdale, A.,
Powell, D., Seemann, T., & Pope, B. (2019). Bionitio: demonstrating and facilitating best
practices for bioinformatics command-line software. GigaScience, 8(9). https://doi.org/10.
1093/gigascience/giz109

Li, H. (2016). Seqtk. https://github.com/lh3/seqtk.

Mohamadi, H., Chu, J., Vandervalk, B. P., & Birol, I. (2016). ntHash: recursive nucleotide
hashing. Bioinformatics, 32(22), 3492–3494. https://doi.org/10.1093/bioinformatics/
btw397

Reinert, K., Dadi, T. H., Ehrhardt, M., Hauswedell, H., Mehringer, S., Rahn, R., Kim, J.,
Pockrandt, C., Winkler, J., Siragusa, E., Urgese, G., & Weese, D. (2017). The SeqAn c++
template library for efficient sequence analysis: A resource for programmers. Journal of
Biotechnology, 261, 157–168. https://doi.org/10.1016/j.jbiotec.2017.07.017

Nikolić et al. (2022). btllib: A C++ library with Python interface for efficient genomic sequence processing. Journal of Open Source Software,
7(79), 4720. https://doi.org/10.21105/joss.04720.

4

https://doi.org/10.1186/s12859-021-04451-7
https://doi.org/10.1093/bioinformatics/btaa253
https://doi.org/10.1093/gigascience/giz109
https://doi.org/10.1093/gigascience/giz109
https://github.com/lh3/seqtk
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/10.21105/joss.04720

	Summary
	Statement of need
	Design & implementation
	Acknowledgements
	References

