The Journal of Open Source Software

WATTS: Workflow and template toolkit for simulation

Paul K. Romano ® 7, Nicolas E. Stauff®!, Zhiee Jhia Ooi ®!, Yinbin
Miao ©®!, Amanda Lund ©®!, and Ling Zou ®1

1 Argonne National Laboratory, USA q Corresponding author
DOI: 10.21105/joss.04735

Software

« Review & Summary

= Repository 7
Modeling and simulation in many science and engineering domains often involves the execution
and/or iteration of a sequence of applications, with data transfer between applications typically
required. These applications often do not have a formal application programming interface
(API). Instead, executing an application requires first writing a text-based input file, the format
of which is typically defined in a user's manual. While text-based input files are suitable

= Archive 7

Editor: Daniel S. Katz 7

Reviewers: for simple one-off calculations, they can become cumbersome if a user wants to execute the
= Osskutnik applications multiple times and systematically vary input parameters, especially when a complex
= @munkm workflow is involved. In this case, they must resort to either manually making changes in the
= @yadudoc input file or developing their own script that modifies the input file and executes the application.

Depending on the format of the input file, writing such a script can be a non-trivial and

Submitted: 22 August 2022 error-prone task.

Published: 10 November 2022

watts (Workflow and Template Toolkit for Simulation) is a Python package that consists of a

A . . set of classes that can manage the execution of one or more applications. Most importantly,

uthors of papers retain copyright - . . - . . .

and release the work under a it provides an ability to use placeholder values in text-based input files that are filled in

Creative Commons Attribution 4.0 Programmatically from Python, thereby giving users of scientific applications a means of

International License (CC BY 4.0). performing parameter and sensitivity studies, optimization, and other scientific workflows
using common third-party Python packages. When running multiple applications in sequence,
this capability also provides a means of using the outputs of one application as the inputs
(parameters) in a subsequent application. watts relies on the Jinja (Jinja Developers, 2022)
templating engine for handling templated variables and expressions in input files. In a Jinja
template, an identifier surrounded by a pair of {{ and }} braces denotes a variable; the variable
can then be specified using the Parameters class from watts. When an application is executed
via watts, it will first render the template using the specified parameters.

License

One of the challenges of managing scientific computing workflows that involve multiple
applications is dealing with differing unit systems. Some applications may use the S| system of
units whereas others may use some variant of the CGS system or even imperial units. When a
single parameter is used by multiple applications, it begs the question of what units should be
used when specifying the parameter. watts solves this problem by optionally storing physical
quantities using the Quantity class from Astropy (Astropy Collaboration et al., 2018, 2013),
which enables the user to specify a value along with its associated units. Each application
that is linked to watts has a unit system specified so that when a templated input file for that
application is rendered, any parameters stored as Quantity instances are first converted to the
appropriate units. For example, if an application uses S| units and a parameter is stored in
inches, it will first be converted to meters.

In addition to the templating capabilities provided by watts, there are a number of other
useful capabilities for scientific simulation workflows. Each time an application is executed
through watts, an isolated execution environment is used so that input and output files are
not overwritten from multiple invocations. Additionally, watts keeps a local database of
application input and output files along with the parameters that are associated with them for

Romano et al. (2022). WATTS: Workflow and template toolkit for simulation. Journal of Open Source Software, 7(79), 4735. https: 1
//doi.org/10.21105/joss.04735.


https://orcid.org/0000-0002-1147-045X
https://orcid.org/0000-0001-6167-9326
https://orcid.org/0000-0003-3027-8516
https://orcid.org/0000-0002-3128-4275
https://orcid.org/0000-0002-8316-0709
https://orcid.org/0000-0003-0664-0474
https://doi.org/10.21105/joss.04735
https://github.com/openjournals/joss-reviews/issues/4735
https://github.com/watts-dev/watts
https://doi.org/10.5281/zenodo.7309095
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/sskutnik
https://github.com/munkm
https://github.com/yadudoc
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Centimetre%E2%80%93gram%E2%80%93second_system_of_units
https://en.wikipedia.org/wiki/Imperial_units
https://doi.org/10.21105/joss.04735
https://doi.org/10.21105/joss.04735

S

The Journal of Open Source Software

later retrieval. Plugin classes, which are discussed further below, encapsulate the execution
logic for particular applications and provide extra postprocessing capabilities for interpreting
application results.

Statement of need

The motivation for the development of watts originated from research and development
activities in nuclear science and engineering (NSE), which rely on a wide array of modeling
and simulation applications covering areas such as reactor physics, thermal hydraulics, fuel
performance, and more. Many of these applications have been developed over decades, and
although some—particularly those written in C++ and Python—have a formal APl by which
external software can interface with, most legacy software packages in NSE typically rely on
simple text-based input files and do not have an API. Thus, watts is meant to aid scientists and
engineers in working with these applications, enabling integration with other off-the-shelf and
open source software packages, and providing a means of data transfer between applications.

It is helpful to place watts within the context of other open source workflow systems. Many
workflow systems (Lampa et al., 2019; Malder et al., 2021; Peterson et al., 2022; Uhrin
et al., 2021) provide capabilities to define workflows involving multiple applications, either
through a dedicated workflow specification language or via high-level logic in a programming
language. Although watts allows multiple applications to be executed within a Python script,
it does not provide a mechanism for defining these workflows through a formal specification.
Instead, watts is primarily intended to enable the execution of applications with templated
input files that can be rendered programmatically. Other workflow systems (Babuji et al., 2019;
Lampa et al., 2019; Salim et al., 2019) are focused on enabling the execution of a workflow
on heterogeneous and/or distributed computing resources, often involving high-performance
computing clusters. This is also outside of the scope of what watts provides.

There have been prior efforts to develop software that enables parameterization of input
files. In particular, the Funz package (Richet & Chabalier, 2021) allows input files to be
templated in a similar manner to watts. However, it differs in several key respects. First,
Funz appears to have a broader scope in terms of how applications are executed; it allows
simulations to be performed from a command-line interface, Excel, R, Python, bash, Java,
and others. watts, on the other hand, solely focuses on enabling Python-based parameterized
workflows. Another key difference is that Funz defines its own syntax for template parameters
and expressions. In contrast, watts relies on the Jinja templating engine and its associated
syntax. We believe this is advantageous for a number of reasons. Relying on Jinja significantly
simplifies the implementation in watts by delegating all the logic associated with template
rendering. It is also beneficial to users because learning Jinja and its associated syntax gives
them a transferrable skill that is useful in any other context where Jinja is used (e.g., web
development). Finally, Funz does not provide any functionality for handling unit conversions
whereas watts does.

watts provides a set of “plugin” classes for specific simulation applications. These plugin
classes define how the application is executed (location of executable and command-line
arguments, if any), what input files are necessary, the system of units to use, and what output
files are produced and collected at the end of a simulation. At present, the collection of plugin
classes consists of common applications used in NSE, including MOOSE (Permann et al.,
2020) and MOOSE-based applications, SAS (Fanning et al., 2016), OpenMC (Romano et al.,
2015; Romano & others, 2022), MCNP (Werner et al., 2018), Serpent (Leppénen et al., 2015),
RELAPS5 (Fletcher & Schultz, 1992), Dakota (Adams et al., 2020), and PyARC (Stauff, 2020).
However, the core capabilities of watts are not specific to the NSE field and could be applied
to any science or engineering application.

At Argonne National Laboratory, watts is currently being used in a variety of research projects
focused on nuclear reactor design that rely on the aforementioned set of applications. Ongoing

Romano et al. (2022). WATTS: Workflow and template toolkit for simulation. Journal of Open Source Software, 7(79), 4735. https: 2

//doi.org/10.21105/joss.04735.


https://workflows.community
https://doi.org/10.21105/joss.04735
https://doi.org/10.21105/joss.04735

The Journal of Open Source Software

work at Argonne also seeks to tie traditional nuclear reactor design tools with techno-economic
and energy market modeling applications.

Acknowledgments

This material is based upon work supported by Laboratory Directed Research and Development
(LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science,
of the U.S. Department of Energy under Contract No. DE-AC02-06CH1135.

References

Adams, B., Bohnhoff, W., Dalbey, K., Ebeida, M., Eddy, J., Eldred, M., Hooper, R., Hough,
P., Hu, K., Jakeman, J., Khalil, M., Maupin, K., Monschke, J. A., Ridgway, E., Rushdi, A.,
Seidl, D., Stephens, J., & Winokur, J. (2020). Dakota, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty quantification, and
sensitivity analysis: Version 6.13 user’s manual. (No. SAND2020-12495). Sandia National
Laboratories. https://doi.org/10.2172/1817318

Astropy Collaboration, Price-Whelan, A. M., Sipécz, B. M., Giinther, H. M., Lim, P. L.,
Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
Vand erPlas, J. T., Bradley, L. D., Pérez-Suérez, D., de Val-Borro, M., Aldcroft, T. L.,
Cruz, K. L., Robitaille, T. P., Tollerud, E. J., .. Astropy Contributors. (2018). The Astropy
Project: Building an Open-science Project and Status of the v2.0 Core Package. The
Astronomical Journal, 156(3), 123. https://doi.org/10.3847/1538-3881/aabc4f

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray,
E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley,
A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair,
P. H., .. Streicher, O. (2013). Astropy: A community Python package for astronomy.
Astronomy and Astrophysics, 558, A33. https://doi.org/10.1051/0004-6361/201322068

Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard,
R., Wozniak, J. M., Foster, |., Wilde, M., & Chard, K. (2019). Parsl: Pervasive parallel
programming in python. Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, 25-36. https://doi.org/10.1145/3307681.
3325400

Fanning, T. H., Thomas, J. W., Sumner, T., & Brunett, A. (2016). Recent developments for
the SAS4A /SASSYS-1 safety analysis code. 16th International Topical Meeting on Nuclear
Reactor Thermal Hydraulics.

Fletcher, C. D., & Schultz, R. R. (1992). RELAP5/MOD3 code manual (NUREG/CR-5535-
Vol.5). Nuclear Regulatory Commission.

Jinja Developers. (2022). Jinja. In GitHub repository. GitHub. https://github.com/pallets/
jinja
Lampa, S., Dahls, M., Alvarsson, J., & Spjuth, O. (2019). SciPipe: A workflow library for

agile development of complex and dynamic bioinformatics pipelines. GigaScience, 8(5).
https://doi.org/10.1093/gigascience/giz044

Leppanen, J., Pusa, M., Viitanen, T., Valtavirta, V., & Kaltiaisenaho, T. (2015). The Serpent
Monte Carlo code: Status, development, and applications in 2013. Annals of Nuclear
Energy, 82, 142-150. https://doi.org/10.1016/j.anucene.2014.08.024

Molder, F., Jablonski, K., Letcher, B., Hall, M., Tomkins-Tinch, C., Sochat, V., Forster, J.,
Lee, S., Twardziok, S., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S.,

Romano et al. (2022). WATTS: Workflow and template toolkit for simulation. Journal of Open Source Software, 7(79), 4735. https: 3

//doi.org/10.21105/joss.04735.


https://doi.org/10.2172/1817318
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://github.com/pallets/jinja
https://github.com/pallets/jinja
https://doi.org/10.1093/gigascience/giz044
https://doi.org/10.1016/j.anucene.2014.08.024
https://doi.org/10.21105/joss.04735
https://doi.org/10.21105/joss.04735

The Journal of Open Source Software

& Koster, J. (2021). Sustainable data analysis with snakemake. FI000Research, 10(33).
https://doi.org/10.12688/f1000research.29032.2

Permann, C. J., Gaston, D. R., Andrs, D., Carlsen, R. W., Kong, F., Lindsay, A. D., Miller,
J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., & Martineau, R. C. (2020).
MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 11, 100430.
https://doi.org/10.1016/j.softx.2020.100430

Peterson, J. L., Bay, B., Koning, J., Robinson, P., Semler, J., White, J., Anirudh, R., Athey,
K., Bremer, P.-T., Di Natale, F., Fox, D., Gaffney, J. A., Jacobs, S. A., Kailkhura, B.,
Kustowski, B., Langer, S., Spears, B., Thiagarajan, J., Van Essen, B., & Yeom, J.-S.
(2022). Enabling machine learning-ready HPC ensembles with merlin. Future Generation
Computer Systems, 131, 255-268. https://doi.org/10.1016/]j.future.2022.01.024

Richet, Y., & Chabalier, N. (2021). Funz/funz-client (Version 1.14) [Computer software].
Zenodo. https://doi.org/10.5281 /zenodo.5761067

Romano, P. K., Horelik, N. E., Herman, B. R., Nelson, A. G., & Forget, B. (2015). OpenMC:
A state-of-the-art Monte Carlo code for research and development. Annals of Nuclear
Energy, 82, 90-97. https://doi.org/10.1016/j.anucene.2014.07.048

Romano, P. K., & others. (2022). openmc-dev/openmc: OpenMC (Version 0.13.0) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.591748

Salim, M. A., Uram, T. D., Childers, J. T., Balaprakash, P., Vishwanath, V., & Papka, M. E.
(2019). Balsam: Automated scheduling and execution of dynamic, data-intensive HPC
workflows. arXiv. https://doi.org/10.48550/arxiv.1909.08704

Stauff, N. (2020). Integration of PyARC/workbench with new fast reactor modeling and
simulation capabilities (ANL/NEAMS-20/2). Argonne National Laboratory.

Uhrin, M., Huber, S. P., Yu, J., Marzari, N., & Pizzi, G. (2021). Workflows in AiiDA:
Engineering a high-throughput, event-based engine for robust and modular computational
workflows. Computational Materials Science, 187, 110086. https://doi.org/10.1016/].
commatsci.2020.110086

Werner, C. J., S., B. J., Solomon, C. J., Jr., Brown, F. B., Mckinney, G. W., Rising, M. E.,
Dixon, D. A., Martz, R. L., Hughes, H. G., lll, Cox, L. J., Zukaitis, A. J., Armstrong, J.
C., Forster, R. A, lll, & Casswell, L. (2018). MCNP version 6.2 release notes (LA-UR-18-
20808). Los Alamos National Laboratory. https://doi.org/10.2172/1419730

Romano et al. (2022). WATTS: Workflow and template toolkit for simulation. Journal of Open Source Software, 7(79), 4735. https: 4

//doi.org/10.21105 /joss.04735.


https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1016/j.softx.2020.100430
https://doi.org/10.1016/j.future.2022.01.024
https://doi.org/10.5281/zenodo.5761067
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.5281/zenodo.591748
https://doi.org/10.48550/arxiv.1909.08704
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.2172/1419730
https://doi.org/10.21105/joss.04735
https://doi.org/10.21105/joss.04735

	Summary
	Statement of need
	Acknowledgments
	References

