
PDENLPModels.jl: An NLPModel API for
Optimization Problems with PDE-Constraints
Tangi Migot 1¶, Dominique Orban 1, and Abel Soares Siqueira 2

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC,
Canada. 2 Netherlands eScience Center, Amsterdam, NL ¶ Corresponding author

DOI: 10.21105/joss.04736

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @jmejia8
• @HaoZeke

Submitted: 31 August 2022
Published: 16 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Shape optimization, optimal control, and parameter estimation of systems governed by partial
differential equations (PDE) give rise to a class of problems known as PDE-constrained
optimization (Hinze et al., 2008). PDENLPModels.jl is a Julia (Bezanson et al., 2017) package
for modeling and discretizing optimization problems with mixed algebraic and PDE in the
constraints. The general form of the problems over some domain Ω ⊂ ℝ𝑑 is

minimize
𝑦,𝑢,𝜃

∫
Ω
𝐽(𝑦, 𝑢, 𝜃)𝑑Ω subject to 𝑒(𝑦, 𝑢, 𝜃) = 0, (governing PDE on Ω)

𝑙𝑦𝑢 ≤ (𝑦, 𝑢) ≤ 𝑢𝑦𝑢, (functional bound constraints)
𝑙𝜃 ≤ 𝜃 ≤ 𝑢𝜃, (bound constraints)

where 𝑦 ∶ Ω → 𝒴 is the state, 𝑢 ∶ Ω → 𝒰 is the control, and 𝜃 ∈ ℝ𝑘 are algebraic variables.
𝐽 ∶ 𝒴 × 𝒰×ℝ𝑘 → ℝ and 𝑒 ∶ 𝒴 × 𝒰×ℝ𝑘 → 𝒞 are smooth mappings. (𝒴, ‖ ⋅ ‖𝒴), (𝒰, ‖ ⋅ ‖𝒰),
and (𝒞, ‖ ⋅ ‖𝒞) are real Banach spaces, 𝑙𝜃, 𝑢𝜃 ∈ ℝ𝑘 are bounds on 𝜃, and 𝑙𝑦𝑢, 𝑢𝑦𝑢 ∶ Ω → 𝒴×𝒰
are functional bounds on the controls and states.

After discretization of the domain Ω, the integral, and the derivatives, the resulting problem is
a nonlinear optimization problem of the form

minimize
𝑥∈ℝ𝑁𝑦+𝑁𝑢+𝑁𝜃

𝑓(𝑥) subject to 𝑐(𝑥) = 0, 𝑙 ≤ 𝑥 ≤ 𝑢,

where 𝑙, 𝑢 ∈ ℝ𝑁𝑦+𝑁𝑢+𝑁𝜃 , 𝑓 ∶ ℝ𝑁𝑦 ×ℝ𝑁𝑢 ×ℝ𝑁𝜃 → ℝ and 𝑐 ∶ ℝ𝑁𝑦 ×ℝ𝑁𝑢 ×ℝ𝑁𝜃 → ℝ𝑁𝑦 .

The two main challenges in modeling such a problem are to be able to (i) discretize the
domain and generate corresponding discretizations of the objective and constraints, and (ii)
evaluate derivatives of 𝑓 and 𝑐 with respect to all variables. Several packages allow the user
to define the domain, meshes, function spaces, and finite-element families to approximate
unknowns, and to model functionals and sets of PDEs in a weak form using powerful high-level
notation. The main ones are FEniCS.jl, a wrapper for the FEniCS library (Logg et al., 2012),
Ferrite.jl (Carlsson et al., 2021), FinEtools.jl (Krysl, 2021), JuliaFEM.jl (Aho et al.,
2018) (Aho et al., 2019), and Gridap.jl (Badia & Verdugo, 2020) (Verdugo & Badia, 2022).
In PDENLPModels.jl, we focus on the latter as it is exclusively written in Julia and supports a
variety of discretizations and meshing possibilities. Additionally, Gridap.jl has an expressive
API allowing one to model complex PDEs with few lines of code, and to write the underlying
weak form with a syntax that is almost one-to-one with mathematical notation.

However, the above packages are designed for sets of PDEs and not for optimization, so that
only the derivatives of the PDE with respect to 𝑦 can be evaluated. In addition, inequalities
are not supported. PDENLPModels.jl extends Gridap.jl’s differentiation facilities to also
obtain derivatives useful for optimization, i.e., first and second derivatives of the objective
and constraint functions with respect to controls and finite-dimensional variables. Because

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

1

https://orcid.org/0000-0001-7729-2513
https://orcid.org/0000-0002-8017-7687
https://orcid.org/0000-0003-4451-281X
https://doi.org/10.21105/joss.04736
https://github.com/openjournals/joss-reviews/issues/4736
https://github.com/JuliaSmoothOptimizers/PDENLPModels.jl
https://doi.org/https://doi.org/10.5281/zenodo.7447623
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/jmejia8
https://github.com/HaoZeke
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04736

we aim to solve nonconvex optimization problems with inequality constraints, it would not be
appropriate, or even feasible, to solve a system of PDEs representing the optimality conditions
with Gridap.jl.

PDENLPModels.jl exports the GridapPDENLPModel type, which uses Gridap.jl for the dis-
cretization of the functional spaces by finite-elements. The resulting model is an instance of
an AbstractNLPModel, as defined in NLPModels.jl (Orban et al., 2020d), that provides access
to objective and constraint function values, to their first and second derivatives, and to any
information that a solver might request from a model.

The role of NLPModels.jl is to define an API that users and solvers can rely on. It is the role of
other packages to implement facilities that create models compliant with the NLPModels API.
There are several examples of this in JuliaSmoothOptimizers organization: AmplNLReader.jl

(Orban et al., 2020a) allows users to connect the AMPL modeling language with NLPModels,
CUTEst.jl (Orban et al., 2020b) does the same for the SIF language, NLPModelsJuMP.jl

(Montoison et al., 2020) does the same with JuMP models, etc. In those three examples, there
exist underlying modeling tools (in Julia or not). PDENLPModels.jl is different in that there is
no existing generic interface for optimization with PDEs. Instead, PDENLPModels.jl interacts
with Gridap.jl to evaluate functionals and differential operators based on a discretization.
Gridap.jl in itself does not let users model optimization problems; only systems of PDEs.
PDENLPModels.jl provides all the extra facilities for users and solvers to interact with a
PDE-constrained optimization problem as they would with a JuMP model, an AMPL model,
or any other model that complies with the NLPModels API. As such, PDENLPModels.jl

offers an interface between generic PDE-constrained optimization problems and cutting-edge
optimization solvers such as Artelys Knitro (Byrd et al., 2006) via NLPModelsKnitro.jl

(Orban et al., 2020e), Ipopt (Wächter & Biegler, 2006) via NLPModelsIpopt.jl (Orban et
al., 2020c), DCISolver.jl (Migot et al., 2022), Percival.jl (dos Santos & Siqueira, 2020),
and any solver accepting an AbstractNLPModel as input, see JuliaSmoothOptimizers (JSO)
(Migot et al., 2021).

The following example shows how to solve a Poisson control problem with Dirichlet boundary
conditions using DCISolver.jl:

minimize
𝑦,𝑢

∫
(−1,1)2

1
2‖𝑦𝑑 − 𝑦‖2 + 𝛼

2 ‖𝑢‖
2𝑑Ω subject to Δ𝑦 − 𝑢 − ℎ = 0, on Ω.

𝑦 = 0, on 𝜕Ω,

for some given functions 𝑦𝑑, ℎ ∶ (−1, 1)2 → ℝ, and 𝛼 > 0.

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

2

https://doi.org/10.21105/joss.04736

using DCISolver, Gridap, PDENLPModels

Ω = (-1, 1, -1, 1) # Cartesian discretization of Ω=(-1,1)2 in 1002 squares.

model = CartesianDiscreteModel(Ω, (100, 100))

fe_y = ReferenceFE(lagrangian, Float64, 2) # Finite-elements for the state

Xpde = TestFESpace(model, fe_y; dirichlet_tags = "boundary")

Ypde = TrialFESpace(Xpde, x -> 0.0) # y is 0 over ∂Ω
fe_u = ReferenceFE(lagrangian, Float64, 1) # Finite-elements for the control

Xcon = TestFESpace(model, fe_u)

Ycon = TrialFESpace(Xcon)

dΩ = Measure(Triangulation(model), 1) # Gridap's integration machinery

Define the objective function f

yd(x) = -x[1]^2

f(y, u) =
∫
(0.5 * (yd - y) * (yd - y) + 0.5 * 1e-2 * u * u) * dΩ

Define the constraint operator in weak form

h(x) = -sin(7π / 8 * x[1]) * sin(7π / 8 * x[2])

c(y, u, v) =
∫
(∇(v) ⊙ ∇(y) - v * u - v * h) * dΩ

Define an initial guess for the discretized problem

x0 = zeros(num_free_dofs(Ypde) + num_free_dofs(Ycon))

Build a GridapPDENLPModel, which implements the NLPModel API.

name = "Control elastic membrane"

nlp = GridapPDENLPModel(x0, f, dΩ, Ypde, Ycon, Xpde, Xcon, c, name = name)

dci(nlp, verbose = 1) # solve the problem with DCI

Statement of need
For PDEs, there are five main ways to discretize functions and their derivatives:

• Finite-difference methods: functions are represented on a grid, e.g., DiffEqOperators.jl
(Rackauckas & Nie, 2017) or Trixi.jl (Schlottke-Lakemper et al., 2020);

• Finite-volume methods: functions are represented by a discretization of their integral;
• Spectral methods: functions are expanded in a global basis, e.g., FFTW.jl (Frigo &

Johnson, 2005) and ApproxFun.jl (Olver & Townsend, 2014);
• Physics-informed neural networks: functions are represented by neural networks, e.g.,

NeuralPDE.jl (Zubov et al., 2021);
• Finite-element methods: functions are expanded in a local basis.

With finite-elements discretization, it is easy to increase the order of the elements or locally
refine the mesh so that the physical fields can be approximated accurately. Another advantage
is that you can straightforwardly combine different kinds of approximation functions, leading
to mixed formulations. Finally, curved or irregular geometries of the domain are handled in a
natural way.

Outside of Julia, there exist libraries handling finite-elements methods such as deal.II

(Bangerth et al., 2007), FEniCS (Logg et al., 2012), PETSc (Balay et al., 2021), and FreeFEM++

(Hecht, 2012). There exists a Julia wrapper to FEniCS (Rackauckas & Nie, 2017) and PETSc

(Crean et al., 2021). However, interfaces to low-level libraries have limitations that pure Julia
implementations do not have, including the ability to generate models with various arithmetic
types.

Julia’s JIT compiler is attractive for the design of efficient scientific computing software,
and, in particular, mathematical optimization (Lubin & Dunning, 2015), and has become
a natural choice for developing new modeling tools. There are other packages available in
Julia for optimization problems with PDE in the constraints. jInv.jl (Ruthotto et al., 2017)
and ADCME.jl (Xu & Darve, 2020) focus on inverse problems. DifferentialEquations.jl

(Rackauckas & Nie, 2017) is a suite for numerically solving differential equations written in
Julia, which includes features for parameter estimation and Bayesian analysis. InfiniteOpt.jl

(Pulsipher et al., 2022) provides a general mathematical abstraction to express and solve infinite-

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

3

https://doi.org/10.21105/joss.04736

dimensional optimization problems including with PDEs in the constraints handled by finite-
differences. TopOpt.jl (Huang & Tarek, 2021) is a package for topology optimization. However,
to the best of our knowledge, there are no packages with the generality of PDENLPModels.jl.

Optimization problems with PDEs in the constraints have been in the spotlight in recent years
as challenging and highly structured. The great divide between optimization libraries and
PDE libraries makes it difficult for optimization research to benefit from testing on a large
base of PDE-constrained problems and PDE libraries to benefit from the latest advances in
optimization. PDENLPModels.jl fills this gap by providing generic discretized models that can
be solved by any solver from JuliaSmoothOptimizers.

Acknowledgements
Tangi Migot is supported by IVADO and the Canada First Research Excellence Fund / Apogée,
and Dominique Orban is partially supported by an NSERC Discovery Grant.

References
Aho, J., Frondelius, T., Ovainola, Arilaakk, Kelman, T., Stoian, V., Badger, T. G., &

Rapo, M. (2018). JuliaFEM/JuliaFEM.jl: Julia V1 compatible release. Zenodo. https:
//doi.org/10.5281/zenodo.1410189

Aho, J., Vuotikka, A.-J., & Frondelius, T. (2019). Introduction to JuliaFEM an open-source
FEM solver. Rakenteiden Mekaniikka, 52, 148–159. https://doi.org/10.23998/rm.75103

Badia, S., & Verdugo, F. (2020). Gridap: An extensible finite element toolbox in Julia. Journal
of Open Source Software, 5(52), 2520. https://doi.org/10.21105/joss.02520

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May,
D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., … Zhang, H.
(2021). PETSc users manual (ANL-95/11 - Revision 3.15). Argonne National Laboratory.
https://www.mcs.anl.gov/petsc

Bangerth, W., Hartmann, R., & Kanschat, G. (2007). Deal. II—a general-purpose object-
oriented finite element library. ACM Transactions on Mathematical Software (TOMS),
33(4), 24–es. https://doi.org/10.1145/1268776.1268779

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). Knitro: An integrated package for nonlinear
optimization. In G. Di Pillo & M. Roma (Eds.), Large-scale nonlinear optimization (pp.
35–59). Springer US. https://doi.org/10.1007/0-387-30065-1_4

Carlsson, K., Ekre, F., & Contributors. (2021). Ferrite.jl (Version 0.3.0) [Computer software].
https://github.com/Ferrite-FEM/Ferrite.jl

Crean, J., Kozdon, J. E., Hyatt, K., & Contributors. (2021). PETSc.jl (Version 0.1.3)
[Computer software]. https://github.com/JuliaParallel/PETSc.jl

dos Santos, E. A., & Siqueira, A. S. (2020). Percival.jl: An augmented Lagrangian method.
https://doi.org/10.5281/zenodo.3969045

Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2), 216–231. https://doi.org/10.1109/JPROC.2004.840301

Hecht, F. (2012). New development in FreeFem++. Journal of Numerical Mathematics,
20(3-4), 251–266. https://doi.org/10.1515/jnum-2012-0013

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

4

https://doi.org/10.5281/zenodo.1410189
https://doi.org/10.5281/zenodo.1410189
https://doi.org/10.23998/rm.75103
https://doi.org/10.21105/joss.02520
https://www.mcs.anl.gov/petsc
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1137/141000671
https://doi.org/10.1007/0-387-30065-1_4
https://github.com/Ferrite-FEM/Ferrite.jl
https://github.com/JuliaParallel/PETSc.jl
https://doi.org/10.5281/zenodo.3969045
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.21105/joss.04736

Hinze, M., Pinnau, R., Ulbrich, M., & Ulbrich, S. (2008). Optimization with PDE constraints
(Vol. 23). Springer Science & Business Media.

Huang, Y., & Tarek, M. (2021). TopOpt.jl: Truss and continuum topology optimization,
interactive visualization, automatic differentiation and more. Proceedings of the 14th
World Congress of Structural and Multidisciplinary Optimization. https://github.com/
JuliaTopOpt/TopOpt.jl

Krysl, P. (2021). FinEtools.jl (Version 5.3.1) [Computer software]. https://doi.org/10.5281/
zenodo.7187507

Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated solution of differential equations
by the finite element method: The FEniCS book (Vol. 84). Springer Science & Business
Media. https://doi.org/10.1007/978-3-642-23099-8

Lubin, M., & Dunning, I. (2015). Computing in operations research using Julia. INFORMS
Journal on Computing, 27 (2), 238–248. https://doi.org/10.1287/ijoc.2014.0623

Migot, T., Orban, D., & Siqueira, A. S. (2021). The JuliaSmoothOptimizers ecosystem for
linear and nonlinear optimization. https://doi.org/10.5281/zenodo.2655082

Migot, T., Orban, D., & Siqueira, A. S. (2022). DCISolver.jl: A Julia solver for nonlinear
optimization using dynamic control of infeasibility. Journal of Open Source Software, 7 (70),
3991. https://doi.org/10.21105/joss.03991

Montoison, A., Orban, D., & Siqueira, A. S. (2020). NLPModelsJuMP.jl: Conversion from
JuMP models to NLPModels. https://doi.org/10.5281/zenodo.2574162

Olver, S., & Townsend, A. (2014). A practical framework for infinite-dimensional linear algebra.
Proceedings of the 1st Workshop for High Performance Technical Computing in Dynamic
Languages – HPTCDL ‘14. https://doi.org/10.1109/HPTCDL.2014.10

Orban, D., Siqueira, A. S., & contributors. (2020a). AmplNLReader.jl: A Julia interface to
AMPL. https://doi.org/10.5281/zenodo.3700941

Orban, D., Siqueira, A. S., & contributors. (2020b). CUTEst.jl: Julia’s CUTEst interface.
https://doi.org/10.5281/zenodo.1188851

Orban, D., Siqueira, A. S., & contributors. (2020c). NLPModelsIpopt.jl: A thin IPOPT
wrapper for NLPModels. https://doi.org/10.5281/zenodo.2629034

Orban, D., Siqueira, A. S., & contributors. (2020d). NLPModels.jl: Data structures for
optimization models. https://doi.org/10.5281/zenodo.2558627

Orban, D., Siqueira, A. S., & contributors. (2020e). NLPModelsKnitro.jl: A thin KNITRO
wrapper for NLPModels. https://doi.org/10.5281/zenodo.3994983

Pulsipher, J. L., Zhang, W., Hongisto, T. J., & Zavala, V. M. (2022). A unifying modeling
abstraction for infinite-dimensional optimization. Computers & Chemical Engineering, 156.
https://doi.org/10.1016/j.compchemeng.2021.107567

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – a performant and feature-rich
ecosystem for solving differential equations in Julia. Journal of Open Research Software,
5(1). https://doi.org/10.5334/jors.151

Ruthotto, L., Treister, E., & Haber, E. (2017). jInv – a flexible Julia package for PDE
parameter estimation. SIAM Journal on Scientific Computing, 39(5), S702–S722. https:
//doi.org/10.1137/16M1081063

Schlottke-Lakemper, M., Gassner, G. J., Ranocha, H., & Winters, A. R. (2020). Trixi.jl:
Adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https://doi.org/10.
5281/zenodo.3996439

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

5

https://github.com/JuliaTopOpt/TopOpt.jl
https://github.com/JuliaTopOpt/TopOpt.jl
https://doi.org/10.5281/zenodo.7187507
https://doi.org/10.5281/zenodo.7187507
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.5281/zenodo.2655082
https://doi.org/10.21105/joss.03991
https://doi.org/10.5281/zenodo.2574162
https://doi.org/10.1109/HPTCDL.2014.10
https://doi.org/10.5281/zenodo.3700941
https://doi.org/10.5281/zenodo.1188851
https://doi.org/10.5281/zenodo.2629034
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.5281/zenodo.3994983
https://doi.org/10.1016/j.compchemeng.2021.107567
https://doi.org/10.5334/jors.151
https://doi.org/10.1137/16M1081063
https://doi.org/10.1137/16M1081063
https://doi.org/10.5281/zenodo.3996439
https://doi.org/10.5281/zenodo.3996439
https://doi.org/10.21105/joss.04736

Verdugo, F., & Badia, S. (2022). The software design of Gridap: A finite element package
based on the Julia JIT compiler. Computer Physics Communications, 108341. https:
//doi.org/10.1016/j.cpc.2022.108341

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Xu, K., & Darve, E. (2020). ADCME: Learning spatially-varying physical fields using deep
neural networks. arXiv Preprint arXiv:2011.11955. https://github.com/kailaix/ADCME.jl

Zubov, K., McCarthy, Z., Ma, Y., Calisto, F., Pagliarino, V., Azeglio, S., Bottero, L., Luján,
E., Sulzer, V., Bharambe, A., & others. (2021). NeuralPDE: Automating physics-informed
neural networks (PINNs) with error approximations. arXiv Preprint arXiv:2107.09443.
https://github.com/SciML/NeuralPDE.jl

Migot et al. (2022). PDENLPModels.jl: An NLPModel API for Optimization Problems with PDE-Constraints. Journal of Open Source Software,
7(80), 4736. https://doi.org/10.21105/joss.04736.

6

https://doi.org/10.1016/j.cpc.2022.108341
https://doi.org/10.1016/j.cpc.2022.108341
https://doi.org/10.1007/s10107-004-0559-y
https://github.com/kailaix/ADCME.jl
https://github.com/SciML/NeuralPDE.jl
https://doi.org/10.21105/joss.04736

	Summary
	Statement of need
	Acknowledgements
	References

