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Summary
Shape optimization, optimal control, and parameter estimation of systems governed by partial
differential equations (PDE) give rise to a class of problems known as PDE-constrained
optimization (Hinze et al., 2008). PDENLPModels.jl is a Julia (Bezanson et al., 2017) package
for modeling and discretizing optimization problems with mixed algebraic and PDE in the
constraints. The general form of the problems over some domain Ω ⊂ ℝ𝑑 is

minimize
𝑦,𝑢,𝜃

∫
Ω
𝐽(𝑦, 𝑢, 𝜃)𝑑Ω subject to 𝑒(𝑦, 𝑢, 𝜃) = 0, (governing PDE on Ω)

𝑙𝑦𝑢 ≤ (𝑦, 𝑢) ≤ 𝑢𝑦𝑢, (functional bound constraints)
𝑙𝜃 ≤ 𝜃 ≤ 𝑢𝜃, (bound constraints)

where 𝑦 ∶ Ω → 𝒴 is the state, 𝑢 ∶ Ω → 𝒰 is the control, and 𝜃 ∈ ℝ𝑘 are algebraic variables.
𝐽 ∶ 𝒴 × 𝒰×ℝ𝑘 → ℝ and 𝑒 ∶ 𝒴 × 𝒰×ℝ𝑘 → 𝒞 are smooth mappings. (𝒴, ‖ ⋅ ‖𝒴), (𝒰, ‖ ⋅ ‖𝒰),
and (𝒞, ‖ ⋅ ‖𝒞) are real Banach spaces, 𝑙𝜃, 𝑢𝜃 ∈ ℝ𝑘 are bounds on 𝜃, and 𝑙𝑦𝑢, 𝑢𝑦𝑢 ∶ Ω → 𝒴×𝒰
are functional bounds on the controls and states.

After discretization of the domain Ω, the integral, and the derivatives, the resulting problem is
a nonlinear optimization problem of the form

minimize
𝑥∈ℝ𝑁𝑦+𝑁𝑢+𝑁𝜃

𝑓(𝑥) subject to 𝑐(𝑥) = 0, 𝑙 ≤ 𝑥 ≤ 𝑢,

where 𝑙, 𝑢 ∈ ℝ𝑁𝑦+𝑁𝑢+𝑁𝜃 , 𝑓 ∶ ℝ𝑁𝑦 ×ℝ𝑁𝑢 ×ℝ𝑁𝜃 → ℝ and 𝑐 ∶ ℝ𝑁𝑦 ×ℝ𝑁𝑢 ×ℝ𝑁𝜃 → ℝ𝑁𝑦 .

The two main challenges in modeling such a problem are to be able to (i) discretize the
domain and generate corresponding discretizations of the objective and constraints, and (ii)
evaluate derivatives of 𝑓 and 𝑐 with respect to all variables. Several packages allow the user
to define the domain, meshes, function spaces, and finite-element families to approximate
unknowns, and to model functionals and sets of PDEs in a weak form using powerful high-level
notation. The main ones are FEniCS.jl, a wrapper for the FEniCS library (Logg et al., 2012),
Ferrite.jl (Carlsson et al., 2021), FinEtools.jl (Krysl, 2021), JuliaFEM.jl (Aho et al.,
2018) (Aho et al., 2019), and Gridap.jl (Badia & Verdugo, 2020) (Verdugo & Badia, 2022).
In PDENLPModels.jl, we focus on the latter as it is exclusively written in Julia and supports a
variety of discretizations and meshing possibilities. Additionally, Gridap.jl has an expressive
API allowing one to model complex PDEs with few lines of code, and to write the underlying
weak form with a syntax that is almost one-to-one with mathematical notation.

However, the above packages are designed for sets of PDEs and not for optimization, so that
only the derivatives of the PDE with respect to 𝑦 can be evaluated. In addition, inequalities
are not supported. PDENLPModels.jl extends Gridap.jl’s differentiation facilities to also
obtain derivatives useful for optimization, i.e., first and second derivatives of the objective
and constraint functions with respect to controls and finite-dimensional variables. Because
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we aim to solve nonconvex optimization problems with inequality constraints, it would not be
appropriate, or even feasible, to solve a system of PDEs representing the optimality conditions
with Gridap.jl.

PDENLPModels.jl exports the GridapPDENLPModel type, which uses Gridap.jl for the dis-
cretization of the functional spaces by finite-elements. The resulting model is an instance of
an AbstractNLPModel, as defined in NLPModels.jl (Orban et al., 2020d), that provides access
to objective and constraint function values, to their first and second derivatives, and to any
information that a solver might request from a model.

The role of NLPModels.jl is to define an API that users and solvers can rely on. It is the role of
other packages to implement facilities that create models compliant with the NLPModels API.
There are several examples of this in JuliaSmoothOptimizers organization: AmplNLReader.jl

(Orban et al., 2020a) allows users to connect the AMPL modeling language with NLPModels,
CUTEst.jl (Orban et al., 2020b) does the same for the SIF language, NLPModelsJuMP.jl

(Montoison et al., 2020) does the same with JuMP models, etc. In those three examples, there
exist underlying modeling tools (in Julia or not). PDENLPModels.jl is different in that there is
no existing generic interface for optimization with PDEs. Instead, PDENLPModels.jl interacts
with Gridap.jl to evaluate functionals and differential operators based on a discretization.
Gridap.jl in itself does not let users model optimization problems; only systems of PDEs.
PDENLPModels.jl provides all the extra facilities for users and solvers to interact with a
PDE-constrained optimization problem as they would with a JuMP model, an AMPL model,
or any other model that complies with the NLPModels API. As such, PDENLPModels.jl

offers an interface between generic PDE-constrained optimization problems and cutting-edge
optimization solvers such as Artelys Knitro (Byrd et al., 2006) via NLPModelsKnitro.jl

(Orban et al., 2020e), Ipopt (Wächter & Biegler, 2006) via NLPModelsIpopt.jl (Orban et
al., 2020c), DCISolver.jl (Migot et al., 2022), Percival.jl (dos Santos & Siqueira, 2020),
and any solver accepting an AbstractNLPModel as input, see JuliaSmoothOptimizers (JSO)
(Migot et al., 2021).

The following example shows how to solve a Poisson control problem with Dirichlet boundary
conditions using DCISolver.jl:

minimize
𝑦,𝑢

∫
(−1,1)2

1
2‖𝑦𝑑 − 𝑦‖2 + 𝛼

2 ‖𝑢‖
2𝑑Ω subject to Δ𝑦 − 𝑢 − ℎ = 0, on Ω.

𝑦 = 0, on 𝜕Ω,

for some given functions 𝑦𝑑, ℎ ∶ (−1, 1)2 → ℝ, and 𝛼 > 0.
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using DCISolver, Gridap, PDENLPModels

Ω = (-1, 1, -1, 1) # Cartesian discretization of Ω=(-1,1)2 in 1002 squares.

model = CartesianDiscreteModel(Ω, (100, 100))

fe_y = ReferenceFE(lagrangian, Float64, 2) # Finite-elements for the state

Xpde = TestFESpace(model, fe_y; dirichlet_tags = "boundary")

Ypde = TrialFESpace(Xpde, x -> 0.0) # y is 0 over ∂Ω
fe_u = ReferenceFE(lagrangian, Float64, 1) # Finite-elements for the control

Xcon = TestFESpace(model, fe_u)

Ycon = TrialFESpace(Xcon)

dΩ = Measure(Triangulation(model), 1) # Gridap's integration machinery

# Define the objective function f

yd(x) = -x[1]^2

f(y, u) =
∫
(0.5 * (yd - y) * (yd - y) + 0.5 * 1e-2 * u * u) * dΩ

# Define the constraint operator in weak form

h(x) = -sin(7π / 8 * x[1]) * sin(7π / 8 * x[2])

c(y, u, v) =
∫
(∇(v) ⊙ ∇(y) - v * u - v * h) * dΩ

# Define an initial guess for the discretized problem

x0 = zeros(num_free_dofs(Ypde) + num_free_dofs(Ycon))

# Build a GridapPDENLPModel, which implements the NLPModel API.

name = "Control elastic membrane"

nlp = GridapPDENLPModel(x0, f, dΩ, Ypde, Ycon, Xpde, Xcon, c, name = name)

dci(nlp, verbose = 1) # solve the problem with DCI

Statement of need
For PDEs, there are five main ways to discretize functions and their derivatives:

• Finite-difference methods: functions are represented on a grid, e.g., DiffEqOperators.jl
(Rackauckas & Nie, 2017) or Trixi.jl (Schlottke-Lakemper et al., 2020);

• Finite-volume methods: functions are represented by a discretization of their integral;
• Spectral methods: functions are expanded in a global basis, e.g., FFTW.jl (Frigo &

Johnson, 2005) and ApproxFun.jl (Olver & Townsend, 2014);
• Physics-informed neural networks: functions are represented by neural networks, e.g.,

NeuralPDE.jl (Zubov et al., 2021);
• Finite-element methods: functions are expanded in a local basis.

With finite-elements discretization, it is easy to increase the order of the elements or locally
refine the mesh so that the physical fields can be approximated accurately. Another advantage
is that you can straightforwardly combine different kinds of approximation functions, leading
to mixed formulations. Finally, curved or irregular geometries of the domain are handled in a
natural way.

Outside of Julia, there exist libraries handling finite-elements methods such as deal.II

(Bangerth et al., 2007), FEniCS (Logg et al., 2012), PETSc (Balay et al., 2021), and FreeFEM++

(Hecht, 2012). There exists a Julia wrapper to FEniCS (Rackauckas & Nie, 2017) and PETSc

(Crean et al., 2021). However, interfaces to low-level libraries have limitations that pure Julia
implementations do not have, including the ability to generate models with various arithmetic
types.

Julia’s JIT compiler is attractive for the design of efficient scientific computing software,
and, in particular, mathematical optimization (Lubin & Dunning, 2015), and has become
a natural choice for developing new modeling tools. There are other packages available in
Julia for optimization problems with PDE in the constraints. jInv.jl (Ruthotto et al., 2017)
and ADCME.jl (Xu & Darve, 2020) focus on inverse problems. DifferentialEquations.jl

(Rackauckas & Nie, 2017) is a suite for numerically solving differential equations written in
Julia, which includes features for parameter estimation and Bayesian analysis. InfiniteOpt.jl

(Pulsipher et al., 2022) provides a general mathematical abstraction to express and solve infinite-
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dimensional optimization problems including with PDEs in the constraints handled by finite-
differences. TopOpt.jl (Huang & Tarek, 2021) is a package for topology optimization. However,
to the best of our knowledge, there are no packages with the generality of PDENLPModels.jl.

Optimization problems with PDEs in the constraints have been in the spotlight in recent years
as challenging and highly structured. The great divide between optimization libraries and
PDE libraries makes it difficult for optimization research to benefit from testing on a large
base of PDE-constrained problems and PDE libraries to benefit from the latest advances in
optimization. PDENLPModels.jl fills this gap by providing generic discretized models that can
be solved by any solver from JuliaSmoothOptimizers.
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