The Journal of Open Source Software

DOI: 10.21105/joss.04739

Software
= Review @@
= Repository @
= Archive &7

Editor: Fabian-Robert Stoter 2
Reviewers:

= @hadware
= @hbredin

Submitted: 14 July 2022
Published: 27 January 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Spafe: Simplified python audio features extraction

Ayoub Malek ©!

1 Yoummday GmbH

Summary

This paper describes version 0.3.1 of spafe: a python package for audio features extraction
based on the Numpy (Harris et al., 2020) and Scipy (Pauli Virtanen & Vazquez-Baeza, 2019)
libraries. Spafe implements various features extraction techniques that can be used to solve
a wide variety of recognition and classification tasks (speaker verification, spoken emotion
recognition, spoken language identification etc.). The paper provides a brief overview of the
library's structure, theory and functionalities.

Statement of need

In speech processing, features extraction is essentially the estimation of a parametric repre-
sentation of an input signal. This is a key step in any audio based modeling and recognition
process (e.g. speech recognition, sound classification, speaker authentication etc.). There
are several speech features to extract, such as the Linear Frequency Cepstral Coefficients
(LFCC), Mel Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC), and
Constant-Q Cepstral Coefficients (CQCC) etc. Each type of features has its own advantages
and drawbacks (e.g. noise robustness, complexity, inter-components correlation etc.) that
can directly affect the researched topic. Unfortunately, existing libraries for extracting these
features (e.g. librosa (McFee et al., 2015), python_speech_features (Lyons et al., 2020),
SpeechPy (Torfi, 2018) and Bob (A. Anjos & Marcel, 2017)) are limited and mostly focus on
one extraction technique (e.g. MFCC), thus it is hard to find reliable implementations of other
features extraction algorithms. Consequently, this slows down the research and hinders the
possibility of exploring and comparing these different approaches. Hence, the need for spafe, a
straightforward solution that unites all these different techniques in one python package.

Introduction

The philosophy of spafe is keeping it simple, flexible and efficient in order to reach a wide
range of developers and researchers. Hence, spafe is written in python 3 and only depends
on Numpy (Harris et al., 2020) and Scipy (Pauli Virtanen & Vazquez-Baeza, 2019). The
library is heavily documented with the help of Sphinx and tested using Pytest. Spafe supports
mono signals processing and has been tested with different sampling rates (e.g. 8kHz, 16Khz,
44.1kHz, 48kHz etc.).

Scripts in spafe are divided into four major groups (see Figure 1):

- fbanks filter banks implementations.

- features features extraction implementations.

- frequencies frequencies based features extraction implementations.

- utils helper functions for pre- & post-processing and visualization etc.

Malek. (2023). Spafe: Simplified python audio features extraction. Journal of Open Source Software, 8(81), 4739. https://doi.org/10.21105/joss. 1

04739.

https://orcid.org/0000-0002-9008-7562
https://doi.org/10.21105/joss.04739
https://github.com/openjournals/joss-reviews/issues/4739
https://github.com/SuperKogito/spafe
https://doi.org/10.5281/zenodo.7533946
https://faroit.com/
https://orcid.org/0000-0002-2534-1165
https://github.com/hadware
https://github.com/hbredin
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04739
https://doi.org/10.21105/joss.04739

The Journal of Open Source Software

Figure 1: Structure of spafe.

Implementation and theory

Filter banks (spafe/fbanks)

! ¥

bark_fbanks.py J -.{bfcc_py J [daminant.frequencies.py] —~{cep5tra|.py]
gammatone_fbanks.py) |{=aecry] (fundamental frequencies.py | [~{converters.py]
[Iinear_fbarlks.py } -[gfcc_py J —-[exceptions.py]
[mel_fhanks.py] ——[|fcc.py] ——[filters.py]

(Ipe.py] -{ preprocessing py |

—{mfcc.py] - (spectral.py]

-(Trcny) ~(ispy)

- (Reccpy)

- (pnccpy)

Gl)

—{rplp.py]

(e)

A filter bank is defined as an array of band pass filters that splits the input signal into a set of
analysis signals, each one carrying a single frequency sub-band of the original signal (Penedo
et al., 2019; Sarangi et al., 2020). Each band pass filter is centered at a different frequency,
called center frequency. The center frequencies are evenly spaced over a specificied scaled
frequencies range(e.g. bark scale, erb scale, mel scale etc.). The bandwidths of the filters
increase with the frequency, in order to duplicate the human hearing properties, which are
characterized by a decreasing sensitivity at higher frequencies. Within this context, spafe
provides implementations for the following filter banks: Bark filter banks, Gammatone filter

banks, Linear filter banks and the Mel filter banks.

Bark Filter Bank
Frequency / bark
00 4.6 77 99 ns

28

156

10 (10166, 1) (16400, 1)

0.8

0.6

Weight

04

0.2

0.0

(4000.0,,

0 500 1000 1500 2000
Frequency / Hz

3000 3500

Figure 2: Bark filter banks computed and visualized using spafe

Features (spafe/features)

In an attempt to cover most audio features, spafe provides various frequency and cepstral
domain features extraction algorithms, both filter bank-based and auto-regression-based. The

Malek. (2023). Spafe: Simplified python audio features extraction. Journal of Open Source Software, 8(81), 4739. https://doi.org/10.21105/joss. 2

04739.

https://doi.org/10.21105/joss.04739
https://doi.org/10.21105/joss.04739

SS

The Journal of Open Source Software

following is a list of the available features extraction routines in the spafe python package:

- Bark Frequency Cepstral Coefficients BFCC
- Constant Q-transform Cepstral Coefficients CQCC
- Gammatone Frequency Cepstral Coefficients GFCC
- Linear Frequency Cepstral Coefficients LFCC

- Linear Prediction Cepstral Coefficients LPCC
- Mel Frequency Cepstral Coefficients MFCC
- Inverse Mel Frequency Cepstral Coefficients IMFCC
- Magnitude based Spectral Root Cepstral Coefficients MSRCC
- Normalized Gammachirp Cepstral Coefficients NGCC
- Power-Normalized Cepstral Coefficients PNCC
- Phase based Spectral Root Cepstral Coefficients PSRCC
- Perceptual Linear Prediction Coefficents PLP

- Rasta Perceptual Linear Prediction Coefficents RPLP

The following figure provides a summary of the included features extraction algorithms and
their detailed steps:

Bark scale Linear scale Inverse Mel scale Mel scale Erb scale
filter bank filter bank filter bank filter bank filter bank

“ﬁ;‘:c‘: Intensity power law

Equal loudness
pre-emphasis

Intensity pre-emphasis

Mean Power
normalization

Power function
non-linearity (.)%

DCT [DCT]

€QCCs LPCCs PLPs RPLPs BFCCs LFCCs IMFCCs MFCCs PSRCCs MSRCCs NGCCs GFCCs PNCCs

Figure 3: Features extraction algorithms in spafe

In addition to the previously mentioned features, spafe allows for computing the following
spectrograms: Bark spectrogram, Cqt spectrogram, Erb spectrogram and Mel spectrogram.

Malek. (2023). Spafe: Simplified python audio features extraction. Journal of Open Source Software, 8(81), 4739. https://doi.org/10.21105/joss. 3
047309.

https://doi.org/10.21105/joss.04739
https://doi.org/10.21105/joss.04739

Mel spectrogram (dB)
- +0dB

-10 dB

-20 dB

-30 dB

-40 dB

Frequency (kHz)

-50 dB

-60 dB

-70 dB

-80 dB

Time {s)

Figure 4: Mel spectrogram computed and visualized using spafe

Frequencies (spafe/frequencies)

The frequencies modules in spafe focus specifically on the computation of dominant and
fundamental frequencies. A dominant frequency is per definition the frequency carrying
the maximum energy among all frequencies of the spectrum (Telgarsky, 2013), whereas the
fundamental frequency (often noted as Fy,) is defined as the inverse of the period of a periodic
signal (Cheveigné & Kawahara, 2002).

Dominant frequencies (Hz)

(560.3) [622.6) (684.8) (747.1) | .(802.3) .(B71.6) 1933.9) .(1058.4) (11206} [(1182.9) [(1245.1) .1307.4)

Spectrum amplitude

600 80O 1000 1200 1400
Frequency (Hz)

Figure 5: Dominant frequencies computed and visualized using spafe

Utils (spafe/utils)

The utils scripts, handle most of the input signal pre-processing steps including pre-emphasis,
framing and windowing. They also include all the conversion computations needed to convert
Hertz frequencies to other frequency scales. On top of that, all feature post-processing routines
are in this group. This includes normalization, liftering, deltas computation and visualization.

Conclusion

This paper introduced spafe, a python package for audio feature extractions. Spafe provides a
unified solution for audio features extraction, that can help simplify and accelerate the research
of various audio-based recognition experiments.

References

A. Anjos, T. de F. P., M. Giinther, & Marcel, S. (2017, August). Continuously reproducing
toolchains in pattern recognition and machine learning experiments. International Confer-
ence on Machine Learning (ICML). http://publications.idiap.ch/downloads/papers/2017/
Anjos_|ICML2017-2_2017.pdf

Malek. (2023). Spafe: Simplified python audio features extraction. Journal of Open Source Software, 8(81), 4739. https://doi.org/10.21105/joss. 4
04739.

http://publications.idiap.ch/downloads/papers/2017/Anjos_ICML2017-2_2017.pdf
http://publications.idiap.ch/downloads/papers/2017/Anjos_ICML2017-2_2017.pdf
https://doi.org/10.21105/joss.04739
https://doi.org/10.21105/joss.04739

The Journal of Open Source Software

Cheveigné, A. de, & Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech
and music. In The Journal of the Acoustical Society of America (No. 4; Vol. 111, pp.
1917-1930). Acoustical Society of America (ASA). https://doi.org/10.1121/1.1458024

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Rio, J. F. del, Wiebe, M., Peterson, P., .. Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Lyons, J., Wang, D. Y.-B., Gianluca, Shteingart, H., Mavrinac, E., Gaurkar, Y., Watchara-
wisetkul, W., Birch, S., Zhihe, L., Hélzl, J., Lesinskis, J., Almér, H., Lord, C., &
Stark, A. (2020). Jameslyons/python_speech_features: Release v0.6.1. Zenodo. https:
//doi.org/10.5281/ZENODO.3607820

McFee, Brian, Raffel, Colin, Liang, Dawen, Ellis, Daniel P.W., McVicar, Matt, Battenberg, Eric,
& Nieto, Oriol. (2015). Librosa: Audio and Music Signal Analysis in Python. In Kathryn
Huff & James Bergstra (Eds.), Proceedings of the 14th Python in Science Conference (pp.
18-24). https://doi.org/10.25080/Majora-7b98e3ed-003

Pauli Virtanen, T. E. O., Ralf Gommers, & Vazquez-Baeza, Y. (2019). SciPy 1.0: Fundamental
algorithms for scientific computing in Python. Nature Methods, 1-12. https://doi.org/10.
1038/541592-019-0686-2

Penedo, S. R. M., Netto, M. L., & Justo, J. F. (2019). Designing digital filter banks using
wavelets. In EURASIP Journal on Advances in Signal Processing (No. 1; Vol. 2019).
Springer Science; Business Media LLC. https://doi.org/10.1186/s13634-019-0632-6

Sarangi, S., Sahidullah, M., & Saha, G. (2020). Optimization of data-driven filterbank for
automatic speaker verification. In Digital Signal Processing (Vol. 104, p. 102795). Elsevier
BV. https://doi.org/10.1016/j.dsp.2020.102795

Telgarsky, R. (2013). Dominant frequency extraction. CoRR, abs/1306.0103. http://arxiv.
org/abs/1306.0103

Torfi, A. (2018). SpeechPy - a library for speech processing and recognition. Journal of Open
Source Software, 3(27), 749. https://doi.org/10.21105/joss.00749

Malek. (2023). Spafe: Simplified python audio features extraction. Journal of Open Source Software, 8(81), 4739. https://doi.org/10.21105/joss. 5

04739.

https://doi.org/10.1121/1.1458024
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/ZENODO.3607820
https://doi.org/10.5281/ZENODO.3607820
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1186/s13634-019-0632-6
https://doi.org/10.1016/j.dsp.2020.102795
http://arxiv.org/abs/1306.0103
http://arxiv.org/abs/1306.0103
https://doi.org/10.21105/joss.00749
https://doi.org/10.21105/joss.04739
https://doi.org/10.21105/joss.04739

	Summary
	Statement of need
	Introduction
	Implementation and theory
	Filter banks (spafe/fbanks)
	Features (spafe/features)
	Frequencies (spafe/frequencies)
	Utils (spafe/utils)

	Conclusion
	References

