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Summary

This paper describes version 0.3.1 of spafe: a python package for audio features extraction
based on the Numpy (Harris et al., 2020) and Scipy (Pauli Virtanen & Vazquez-Baeza, 2019)
libraries. Spafe implements various features extraction techniques that can be used to solve
a wide variety of recognition and classification tasks (speaker verification, spoken emotion
recognition, spoken language identification etc.). The paper provides a brief overview of the
library's structure, theory and functionalities.

Statement of need

In speech processing, features extraction is essentially the estimation of a parametric repre-
sentation of an input signal. This is a key step in any audio based modeling and recognition
process (e.g. speech recognition, sound classification, speaker authentication etc.). There
are several speech features to extract, such as the Linear Frequency Cepstral Coefficients
(LFCC), Mel Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC), and
Constant-Q Cepstral Coefficients (CQCC) etc. Each type of features has its own advantages
and drawbacks (e.g. noise robustness, complexity, inter-components correlation etc.) that
can directly affect the researched topic. Unfortunately, existing libraries for extracting these
features (e.g. librosa (McFee et al., 2015), python_speech_features (Lyons et al., 2020),
SpeechPy (Torfi, 2018) and Bob (A. Anjos & Marcel, 2017)) are limited and mostly focus on
one extraction technique (e.g. MFCC), thus it is hard to find reliable implementations of other
features extraction algorithms. Consequently, this slows down the research and hinders the
possibility of exploring and comparing these different approaches. Hence, the need for spafe, a
straightforward solution that unites all these different techniques in one python package.

Introduction

The philosophy of spafe is keeping it simple, flexible and efficient in order to reach a wide
range of developers and researchers. Hence, spafe is written in python 3 and only depends
on Numpy (Harris et al., 2020) and Scipy (Pauli Virtanen & Vazquez-Baeza, 2019). The
library is heavily documented with the help of Sphinx and tested using Pytest. Spafe supports
mono signals processing and has been tested with different sampling rates (e.g. 8kHz, 16Khz,
44.1kHz, 48kHz etc.).

Scripts in spafe are divided into four major groups (see Figure 1):

- fbanks filter banks implementations.

- features features extraction implementations.

- frequencies frequencies based features extraction implementations.

- utils helper functions for pre- & post-processing and visualization etc.
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Figure 1: Structure of spafe.

Implementation and theory

Filter banks (spafe/fbanks)
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A filter bank is defined as an array of band pass filters that splits the input signal into a set of
analysis signals, each one carrying a single frequency sub-band of the original signal (Penedo
et al., 2019; Sarangi et al., 2020). Each band pass filter is centered at a different frequency,
called center frequency. The center frequencies are evenly spaced over a specificied scaled
frequencies range(e.g. bark scale, erb scale, mel scale etc.). The bandwidths of the filters
increase with the frequency, in order to duplicate the human hearing properties, which are
characterized by a decreasing sensitivity at higher frequencies. Within this context, spafe
provides implementations for the following filter banks: Bark filter banks, Gammatone filter

banks, Linear filter banks and the Mel filter banks.
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Figure 2: Bark filter banks computed and visualized using spafe

Features (spafe/features)

In an attempt to cover most audio features, spafe provides various frequency and cepstral
domain features extraction algorithms, both filter bank-based and auto-regression-based. The
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following is a list of the available features extraction routines in the spafe python package:

- Bark Frequency Cepstral Coefficients BFCC
- Constant Q-transform Cepstral Coefficients CQCC
- Gammatone Frequency Cepstral Coefficients GFCC
- Linear Frequency Cepstral Coefficients LFCC

- Linear Prediction Cepstral Coefficients LPCC
- Mel Frequency Cepstral Coefficients MFCC
- Inverse Mel Frequency Cepstral Coefficients IMFCC
- Magnitude based Spectral Root Cepstral Coefficients MSRCC
- Normalized Gammachirp Cepstral Coefficients NGCC
- Power-Normalized Cepstral Coefficients PNCC
- Phase based Spectral Root Cepstral Coefficients PSRCC
- Perceptual Linear Prediction Coefficents PLP

- Rasta Perceptual Linear Prediction Coefficents RPLP

The following figure provides a summary of the included features extraction algorithms and
their detailed steps:
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Figure 3: Features extraction algorithms in spafe

In addition to the previously mentioned features, spafe allows for computing the following
spectrograms: Bark spectrogram, Cqt spectrogram, Erb spectrogram and Mel spectrogram.
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Figure 4: Mel spectrogram computed and visualized using spafe

Frequencies (spafe/frequencies)

The frequencies modules in spafe focus specifically on the computation of dominant and
fundamental frequencies. A dominant frequency is per definition the frequency carrying
the maximum energy among all frequencies of the spectrum (Telgarsky, 2013), whereas the
fundamental frequency (often noted as Fy, ) is defined as the inverse of the period of a periodic
signal (Cheveigné & Kawahara, 2002).
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Figure 5: Dominant frequencies computed and visualized using spafe

Utils (spafe/utils)

The utils scripts, handle most of the input signal pre-processing steps including pre-emphasis,
framing and windowing. They also include all the conversion computations needed to convert
Hertz frequencies to other frequency scales. On top of that, all feature post-processing routines
are in this group. This includes normalization, liftering, deltas computation and visualization.

Conclusion

This paper introduced spafe, a python package for audio feature extractions. Spafe provides a
unified solution for audio features extraction, that can help simplify and accelerate the research
of various audio-based recognition experiments.
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