
basilisk: a Bioconductor package for managing Python
environments
Aaron T. L. Lun 1

1 Genentech Inc., South San Francisco, USA
DOI: 10.21105/joss.04742

Software
• Review
• Repository
• Archive

Editor: Nikoleta Glynatsi
Reviewers:

• @jsun
• @gtonkinhill

Submitted: 18 August 2022
Published: 04 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
basilisk is an R/Bioconductor package for managing Python environments within the Bio-
conductor package ecosystem. Developers of other Bioconductor packages can use basilisk

to automatically provision and load custom Python environments, providing a streamlined
experience for their end-users by avoiding the need for any manual system configuration.
basilisk also enables robust execution of Python code via reticulate in complex analysis
workflows involving multiple Python environments. This package aims to provide a standardized
mechanism for integration of Python functionality into the Bioconductor code base.

Statement of need
The Python package ecosystem provides a large number of algorithms and tools that are
relevant to R/Bioconductor users. Interoperability between R and Python is facilitated by
several popular tools - this includes the reticulate package to seamlessly call Python code from
an R session (Ushey et al., 2022), and the conda package manager to provision environments
with the appropriate Python packages (Anaconda Inc., 2022). However, the configuration
and management of the Python instances is typically the responsibility of the end user.
R/Bioconductor packages with Python functionality often rely on the user to manually ensure
that the correct versions of all Python packages are installed. This is burdensome, error-prone,
and does not scale to widespread integration of Python code into the Bioconductor ecosystem.
Moreover, reticulate only supports one Python environment for each R session. This
compromises interoperability between multiple R/Bioconductor packages that have different
(and possibly incompatible) Python dependencies. The basilisk package aims to automate
the management of Python environments required by “client” R/Bioconductor packages,
simplifying their installation and enabling their integration into complex analysis workflows.

Usage
A developer of a client package is expected to define one or more BasiliskEnvironment

objects that describe the Python environments required by the package. I show an small
example below from the snifter Bioconductor package (O’Callaghan & Lun, 2022):

snifter.env <- BasiliskEnvironment(

”fitsne”,

pkgname = ”snifter”,

packages = c(

”opentsne=0.4.3”,

”scikit-learn=0.23.1”,

if (basilisk.utils::isWindows()) ”scipy=1.5.0” else ”scipy=1.5.1”,

”numpy=1.19.0”,

Lun. (2022). basilisk: a Bioconductor package for managing Python environments. Journal of Open Source Software, 7(79), 4742. https:
//doi.org/10.21105/joss.04742.

1

https://orcid.org/0000-0002-3564-4813
https://doi.org/10.21105/joss.04742
https://github.com/openjournals/joss-reviews/issues/4742
https://github.com/LTLA/basilisk
https://doi.org/10.5281/zenodo.7212841
https://nikoleta-v3.github.io
https://orcid.org/0000-0002-2943-3622
https://github.com/jsun
https://github.com/gtonkinhill
https://creativecommons.org/licenses/by/4.0/
https://bioconductor.org/packages/basilisk
https://bioconductor.org/packages/snifter
https://doi.org/10.21105/joss.04742
https://doi.org/10.21105/joss.04742

”python=3.7”

)

)

Once defined, any BasiliskEnvironment object can be used in the basiliskRun() function
to execute arbitrary R code in the context of the associated Python environment. This is most
typically combined with reticulate to provide an intuitive developer experience when calling
Python from R. To demonstrate, I’ll again use an example from snifter, paraphrased for
brevity:

out <- basiliskRun(

env = snifter.env,

fun = function(x, ...) {

openTSNE <- reticulate::import(”openTSNE”, convert = FALSE)

obj <- openTSNE$TSNE(...)

out <- obj$fit(x)

list(

x = reticulate::py_to_r(out),

affinities = reticulate::py_to_r(out$affinities$P)

)

},

x = input_matrix # for some observation x dimension matrix.

)

Technically, the above call to basiliskRun() consists of an internal basiliskStart() step
to provision and load the appropriate environment, followed by the execution of the provided
fun=. Advanced users can efficiently re-use the same environment across multiple Python steps
by running basiliskStart() explicitly before any number of basiliskRun() calls:

proc <- basiliskStart(env = snifter.env)

on.exit(basiliskStop(proc)) # for use inside functions

out <- basiliskRun(proc,

fun = function(x, ...) {

openTSNE <- reticulate::import(”openTSNE”, convert = FALSE)

obj <- openTSNE$TSNE(...)

out <- obj$fit(x)

list(

x = reticulate::py_to_r(out),

affinities = reticulate::py_to_r(out$affinities$P)

)

},

x = input_matrix

)

Re-using the same basilisk process:

ver <- basiliskRun(proc, fun = function() {

mod <- reticulate::import(”openTSNE”)

mod$`__version__`

})

Managing Python environments
basilisk uses conda to automatically manage the creation of Python environments on the
user’s device. On the first use of basiliskStart() anywhere, a local copy of conda is installed
using an appropriate Miniconda installer for the user’s system. Each conda environment required

Lun. (2022). basilisk: a Bioconductor package for managing Python environments. Journal of Open Source Software, 7(79), 4742. https:
//doi.org/10.21105/joss.04742.

2

https://doi.org/10.21105/joss.04742
https://doi.org/10.21105/joss.04742

by a client package is lazily instantiated on the first call to basiliskStart() that uses the
corresponding BasiliskEnvironment object. Subsequent uses of that BasiliskEnvironment

via basiliskStart() will then re-use the cached conda environment.

I used conda and lazy installation to reduce the burden on the user during installation of client
packages. With conda, the user does not have to perform any system configuration such as
installing Python or the relevant Python packages. Client packages can define any number of
Python environments, but the use of lazy instantiation means that only the ones that are used
will actually be created on the user’s machine. Similarly, if a client package only uses Python
for some optional functionality, the cost of installation is only paid when that functionality is
requested.

Lazy instantiation involves the construction of a user-owned cache of conda environments.
These environments can consume a large amount of disk space, so basilisk will automatically
remove environments that have not been recently used. Some care is also taken to ensure that
cache management is thread-safe - if multiple processes attempt to create or delete a particular
environment, only one will proceed while the others will wait for its completion. This ensures
that multiple basilisk-dependent tasks can be run concurrently without corrupting the cache.

In some scenarios, it is preferable to pay the environment instantiation cost during client
package installation. This avoids any delay on first use of basiliskStart() within the client
package, which provides more predictable end-user experiences for R-based applications like
Shiny. To do this, administrators of an R installation can set the BASILISK_SYSTEM_DIR

environment variable, which will cause the conda environments to be created in the client
package’s installation directory. This “system-wide” installation is also useful on shared systems
where a single environment is provisioned for any number of users, rather than requiring each
user to create and cache their own.

For developers, the use of conda provides a consistent cross-platform experience for easier
maintenance and debugging. It also allows client packages to easily switch between Python
versions in different environments, e.g., to run legacy code that is only compatible with
older Python versions. However, some Python packages may not be available from conda’s
repositories, so we provide the pip= argument in the BasiliskEnvironment constructor to pull
those packages from PyPI instead.

Integrating with reticulate

basilisk naturally integrates with reticulate to seamlessly call Python code from
R. basiliskStart() will automatically load the appropriate Python instance before
basiliskRun() evaluates fun=, ensuring that the correct packages are available. If a
different Python instance is already loaded into the current R session, basiliskStart() will
automatically spin up a new R process to run fun= before transferring the results back to
the current session. In this manner, basilisk supports the use of reticulate with multiple
Python environments in a single analysis, despite the fact that reticulate is limited to only
one Python instance for the lifetime of any given R session (Muenchow et al., 2019).

The use of new R processes ensures that a basilisk client package will always be able to
successfully execute its Python-related code via reticulate. The client package remains
functional even if other packages - or indeed, the user themselves - load a different Python
instance into the current session. In fact, client packages can be forced to always start a new
process in basiliskStart() by turning off the getBasiliskShared() option, which avoids
interfering with non-basilisk usage of other Python instances via reticulate in the current
session. However, this robustness comes at the cost of performance due to the need to spin up
a new R process (with the associated delay from package loading) as well as the overhead of
communication between different R processes. As such, loading of Python into the current
session is preferred by default.

Lun. (2022). basilisk: a Bioconductor package for managing Python environments. Journal of Open Source Software, 7(79), 4742. https:
//doi.org/10.21105/joss.04742.

3

https://doi.org/10.21105/joss.04742
https://doi.org/10.21105/joss.04742

It is also possible to obtain the path to the environment’s directory for execution of Python
code outside of reticulate. This is more onerous but allows clients to directly call executables
that are provided in the environment. For example, the crisprScore package (Hoberecht et
al., 2022) relies on Python 2 environments that will no longer be supported by reticulate

(Kalinowski, 2022). By directly acquiring the path to the provisioned environment, crisprScore
can locate the Python 2 executable for execution of its legacy code.

Further comments
The current set of basilisk clients can be found on its Bioconductor landing page, including
snifter, crisprScore, zellkonverter, velociraptor and BiocSklearn, to name a few.

The name “basilisk” is based on the mythological snake monster (Rowling, 1998). The original
purpose of the basilisk package was to freeze Python package versions, much like how the
monster was able to Petrify its victims.

Acknowledgements
Thanks to Vince Carey, one of the first developers using basilisk in his BiocSklearn package;
Hervé Pagès, for helping me to get basilisk through the Bioconductor build system; Jean-
Philippe Fortin, a basilisk power user with his crisprScore package; and Luke Zappia, Alan
O’Callaghan and Kevin Rue-Albrecht, for their feedback as client package developers.

References
Anaconda Inc. (2022). Conda. https://conda.io/projects/conda/en/latest

Hoberecht, L., Perampalam, P., Lun, A., & Fortin, J.-P. (2022). A comprehensive Bioconductor
ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. bioRxiv.
https://doi.org/10.1101/2022.04.21.488824

Kalinowski, T. (2022). Restore Python 2 compatibility; deprecate Python 2 compatability.
https://github.com/rstudio/reticulate/pull/1242

Muenchow, J., Allaire, J., & Markov, N. (2019). Change path to Python binary. https:
//github.com/rstudio/reticulate/issues/27

O’Callaghan, A., & Lun, A. (2022). Snifter: R wrapper for the python openTSNE library.
https://doi.org/10.18129/B9.bioc.snifter

Rowling, J. K. (1998). Harry Potter and the Chamber of Secrets. Bloomsbury.

Ushey, K., Allaire, J., & Tang, Y. (2022). Reticulate: Interface to ’Python’. https://rstudio.
github.io/reticulate/

Lun. (2022). basilisk: a Bioconductor package for managing Python environments. Journal of Open Source Software, 7(79), 4742. https:
//doi.org/10.21105/joss.04742.

4

https://bioconductor.org/packages/crisprScore
https://bioconductor.org/packages/basilisk
https://bioconductor.org/packages/BiocSklearn
https://bioconductor.org/packages/crisprScore
https://conda.io/projects/conda/en/latest
https://doi.org/10.1101/2022.04.21.488824
https://github.com/rstudio/reticulate/pull/1242
https://github.com/rstudio/reticulate/issues/27
https://github.com/rstudio/reticulate/issues/27
https://doi.org/10.18129/B9.bioc.snifter
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://doi.org/10.21105/joss.04742
https://doi.org/10.21105/joss.04742

	Summary
	Statement of need
	Usage
	Managing Python environments
	Integrating with reticulate
	Further comments
	Acknowledgements
	References

