
LenslessPiCam: A Hardware and Software Platform for
Lensless Computational Imaging with a Raspberry Pi
Eric Bezzam 1, Sepand Kashani 1, Martin Vetterli 1, and Matthieu
Simeoni 1

1 École Polytechnique Fédérale de Lausanne (EPFL)
DOI: 10.21105/joss.04747

Software
• Review
• Repository
• Archive

Editor: Dana Solav
Reviewers:

• @raolivei13
• @siddiquesalman

Submitted: 21 March 2022
Published: 26 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Lensless imaging seeks to replace or remove the lens in a conventional imaging system. The
earliest cameras were in fact lensless, relying on long exposure times to form images on the other
end of a small aperture in a darkened room/container (camera obscura). The introduction of
a lens allowed for more light throughput and therefore shorter exposure times, while retaining
sharp focus. The incorporation of digital sensors readily enabled the use of computational
imaging techniques to post-process and enhance raw images (e.g. via deblurring, inpainting,
denoising, sharpening). Recently, imaging scientists have started leveraging computational
imaging as an integral part of lensless imaging systems, allowing them to form viewable images
from the highly multiplexed raw measurements of lensless cameras (see (Boominathan et
al., 2022) and references therein for a comprehensive treatment of lensless imaging). This
represents a real paradigm shift in camera system design as there is more flexibility to cater the
hardware to the application at hand (e.g., lightweight or flat designs). This increased flexibility
comes, however, at the price of a more demanding post-processing of the raw digital recordings
and a tighter integration of sensing and computation, often difficult to achieve in practice
due to inefficient interactions between the various communities of scientists involved. With
LenslessPiCam, we provide an easily accessible hardware and software framework to enable
researchers, hobbyists, and students to implement and explore practical and computational
aspects of lensless imaging.

Statement of need
Being at the interface of hardware, software, and algorithm design, the field of lensless imaging
necessitates a broad array of competences that might deter newcomers to the field. The
purpose of LenslessPiCam is to provide a complete toolkit with low-cost, accessible hardware
designs and open-source software, to quickly enable the exploration of novel ideas for hardware,
software, and algorithm design.

The DiffuserCam tutorial (Biscarrat et al., 2018) served as a great starting point to the present
toolkit as it demonstrates that a working lensless camera can be built with cheap hardware: a
Raspberry Pi, the Camera Module 2, and double-sided tape. The authors also provide Python
implementations of two image reconstruction algorithms: variants of gradient descent (GD)
with a non-negativity constraint; and the alternating direction method of multipliers (ADMM)
(Boyd et al., 2011) with an additional total variation (TV) prior.

The resolution and quality of the reconstructed images for the DiffuserCam tutorial is poor
and the processing pipeline is limited to grayscale reconstruction. With LenslessPiCam, we
improve the reconstruction by using the newer HQ camera as well as a more versatile and
generic RGB computational imaging pipeline. See Figure 1 for a comparison between the two
cameras.

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

1

https://orcid.org/0000-0003-4837-5031
https://orcid.org/0000-0002-0735-371X
https://orcid.org/0000-0002-6122-1216
https://orcid.org/0000-0002-4927-3697
https://doi.org/10.21105/joss.04747
https://github.com/openjournals/joss-reviews/issues/4747
https://github.com/LCAV/LenslessPiCam
https://doi.org/10.5281/zenodo.8036869
http://solavlab.com
https://orcid.org/0000-0003-3215-0401
https://github.com/raolivei13
https://github.com/siddiquesalman
https://creativecommons.org/licenses/by/4.0/
https://www.raspberrypi.com/products/camera-module-v2
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://doi.org/10.21105/joss.04747

Figure 1: ADMM reconstruction of (a) an image of thumbs-up on a phone 40 cm away for (b) the
original DiffuserCam tutorial (Biscarrat et al., 2018) and (c) our camera with RGB support.

Similar to (Biscarrat et al., 2018), the core image reconstruction functionality of LenslessPiCam
depends on NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020). Moreover,
LenslessPiCam also provides support for Pycsou (Simeoni, 2021), a universal and reusable
software environment providing key computational imaging functionalities and tools with
great modularity and interoperability. This results in a more flexible reconstruction workflow,
allowing for the quick prototyping of advanced post-processing schemes with more sophisticated
image priors. PyTorch (Paszke et al., 2017) support also enables the use of GPUs for faster
reconstruction, and the use of deep learning for image reconstruction.

LenslessPiCam is designed to be used by researchers, hobbyists, and students. In the past,
we have found such open-source hardware and software platforms to be a valuable resource
for researchers (Bezzam et al., 2017) and students alike (Bezzam et al., 2019). Moreover,
we have used LenslessPiCam in our own work for performing measurements, simulating data,
and image reconstruction (Bezzam et al., 2022), and in our graduate-level signal processing
course as a final project. Figure 2 demonstrates reconstructed images of our students using
LenslessPiCam and images that were projected on a monitor 40cm away; the figure is adapted
from this report.

Figure 2: Reconstructions of images displayed on a monitor. “Original” is displayed on the monitor, and
each subsequent row represents a reconstruction with (1) an L2 data fidelity between the measurement
and the propagated image estimate (using a measured PSF) and (2) different priors/regularizers on the
image estimate: L2 sparsity, non-negativity and total variation (TV), non-negativity, and L1 sparsity.

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

2

https://infoscience.epfl.ch/search?ln=en&rm=&ln=en&sf=&so=d&rg=10&c=Infoscience%2FArticle&c=Infoscience%2FBook&c=Infoscience%2FChapter&c=Infoscience%2FConference&c=Infoscience%2FDataset&c=Infoscience%2FLectures&c=Infoscience%2FPatent&c=Infoscience%2FPhysical%20objects&c=Infoscience%2FPoster&c=Infoscience%2FPresentation&c=Infoscience%2FProceedings&c=Infoscience%2FReport&c=Infoscience%2FReview&c=Infoscience%2FStandard&c=Infoscience%2FStudent&c=Infoscience%2FThesis&c=Infoscience%2FWorking%20papers&c=Media&c=Other%20doctypes&c=Work%20done%20outside%20EPFL&c=&of=hb&fct__2=LCAV&p=diffusercam
https://infoscience.epfl.ch/record/291501?ln=en
https://doi.org/10.21105/joss.04747

As opposed to Figure 1 and Figure 2, which show reconstructions of back-illuminated objects,
Figure 3 demonstrates reconstructions of objects illuminated with an external source.

Figure 3: Reconstruction of objects 25cm away, illuminated with a lamp.

Figure 4 demonstrates the field-of-view (FOV) of the proposed system with double-sided tape.
Objects are 40cm away.

Figure 4: Experimental field-of-view (FOV) of tape-based LenslessPiCam.

Contributions
With respect to the DiffuserCam tutorial (Biscarrat et al., 2018), we have made the following
contributions. In terms of hardware, as shown in Figure 5, we:

• make use of the HQ camera sensor ($50): 4056 x 3040 pixels (12.3 MP) and 7.9 mm
sensor diagonal, compared to 3280 × 2464 pixels (8.1 MP) and 4.6 mm sensor diagonal
for the Camera Module 2 ($30). A tutorial for building our proposed camera can be
found on Medium;

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

3

https://medium.com/@bezzam/building-a-diffusercam-with-the-raspberry-hq-camera-cardboard-and-tape-896b6020aff6
https://doi.org/10.21105/joss.04747

• provide the design and firmware for a cheap point source generator (needed for calibration),
which consists of an Arduino, a white LED, and a cardboard box. A tutorial for building
this system can be found on Medium.

Figure 5: (a) LenslessPiCam, (b) point source generator (inside) and (c) (outside).

With respect to reconstruction algorithms, we:

• provide significantly faster implementations of GD and ADMM;
• extend the above reconstructions to RGB;
• provide PyTorch / GPU support;
• provide an object-oriented structure that is easy to extend for exploring new algorithms;
• provide an object-oriented interface to Pycsou for solving lensless imaging inverse

problems. Pycsou is a Python package for solving inverse problems of the form

min
x∈ℝ𝑁

𝐹(y,Gx) + 𝜆ℛ(x), (1)

where 𝐹 is a data-fidelity term between the observed and predicted measurements y
and Gx, respectively, ℛ is a regularization component (could consist of more than one
prior), and 𝜆 > 0 controls the amount of regularization.

We also provide functionalities to:

• remotely display data on an external monitor (as done for Figure 2), which can be used
to automate raw data measurements to, e.g., gather a dataset;

• simulate measurements, given a point spread function (PSF) of a lensless camera. A
tutorial can be found on Medium;

• evaluate reconstructions on a variety of metrics: mean squared error (MSE), peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and learned
perceptual image patch similarity (LPIPS). A tutorial can be found on Medium;

• quantitatively evaluate the PSF of the lensless camera.

As previous noted, we have written a set of Medium articles to guide users through the process
of building and using the proposed lensless camera. An overview of these articles can be found
here. A ReadTheDocs page also provides an overview of all the available features.

In the following sections, we describe some of these contributions, and quantify them (where
appropriate).

High-level, modular functionality for reconstructions
The core algorithmic component of LenslessPiCam is the abstract class lensless.ReconstructionAlgorithm.
The three reconstruction strategies available in LenslessPiCam derive from this class:

• lensless.GradientDescient: projected GD with a non-negativity constraint. Two ac-
celerated approaches are also available: lensless.NesterovGradientDescent (Nesterov,
1983) and lensless.FISTA (Beck & Teboulle, 2009);

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

4

https://medium.com/@bezzam/measuring-an-optical-psf-with-an-arduino-an-led-and-a-cardboard-box-2f3ddac660c1
https://medium.com/@bezzam/simulating-camera-measurements-through-wave-optics-with-pytorch-support-faf3fa620789
https://medium.com/@bezzam/image-similarity-metrics-applied-to-diffusercam-21998967af8d
https://medium.com/@bezzam/a-complete-lensless-imaging-tutorial-hardware-software-and-algorithms-8873fa81a660
https://lensless.readthedocs.io
https://doi.org/10.21105/joss.04747

• lensless.ADMM: ADMM with a non-negativity constraint and a TV regularizer;
• lensless.APGD: accelerated proximal GD with Pycsou as a backend. Any differentiable

or proximal operator can be used as long as it is compatible with Pycsou, namely derives
from one of DiffFunc or ProxFunc.

One major advantage of deriving from lensless.ReconstructionAlgorithm is that code
duplication across algorithm can be minimized as it handles most of the common functionality,
i.e., efficiently computing 2D Fourier transforms (needed to solve Equation 1), iteration logic,
saving intermediate outputs, and visualization. Using a reconstruction algorithm that derives
from it boils down to three steps:

1. Creating an instance of the reconstruction algorithm.
2. Setting the data.
3. Applying the algorithm.

For example, for ADMM (full example in scripts/recon/admm.py):

recon = ADMM(psf)

recon.set_data(data)

res = recon.apply(n_iter=n_iter)

Example reconstruction scripts can be found in scripts/recon. The Hydra framework (Yadan,
2019) is used to configure the various reconstruction algorithms, with the default configuration
(defaults_recon.yaml) and others located in the configs folder.

Efficient reconstruction
In Table 1, we compare the processing time of DiffuserCam’s and LenslessPiCam’s implemen-
tations for grayscale reconstruction of:

1. GD using FISTA with a non-negativity constraint.
2. ADMM with a non-negativity constraint and a TV regularizer.

The DiffuserCam implementations can be found here, while lensless.APGD and lensless.ADMM

are used for LenslessPiCam. The comparison is done on a Dell Precision 5820 Tower X-Series
(08B1) machine with an Intel i9-10900X 3.70 GHz processor (10 cores, 20 threads), running
Ubuntu 20.04.5 LTS and (when applicable) an NVIDIA RTX A5000 GPU.

Table 1: Benchmark grayscale reconstruction. 300 iterations for gradient descent (GD) and 5 iterations
for alternating direction method of multipliers (ADMM).

GD ADMM
DiffuserCam 246 s 6.81 s

LenslessPiCam (numpy) 21.1 s 1.26 s
LenslessPiCam (torch, CPU) 4.32 s 272 ms
LenslessPiCam (torch, GPU) 274 ms 2.88 ms

In Table 1, we observe an 11.7x reduction in computation time for GD and a 2.4x reduction
for ADMM. This comes from:

• our object-oriented implementation of the algorithms, which allocates all the necessary
memory beforehand and pre-computes data-independent terms, such as forward operators
from the point spread function (PSF);

• our use of the real-valued fast Fourier transform (FFT), which is possible since we are
working with image intensities. Our convolver/deconvolver is implemented as an object -
RealFFTConvolve2D - that pre-computes the FFT of the PSF and supports SciPy and
PyTorch backends.

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

5

https://github.com/matthieumeo/pycsou/blob/a74b714192821501371c89dbd44eac15a5456a0f/src/pycsou/abc/operator.py#L980
https://github.com/matthieumeo/pycsou/blob/a74b714192821501371c89dbd44eac15a5456a0f/src/pycsou/abc/operator.py#L741
https://github.com/LCAV/LenslessPiCam/tree/main/scripts/recon
https://github.com/LCAV/LenslessPiCam/tree/main/configs
https://github.com/Waller-Lab/DiffuserCam-Tutorial
https://github.com/LCAV/LenslessPiCam/blob/e31c9a7c8c87d30d4881b1123d849e7667b2e335/lensless/rfft_convolve.py#L16
https://doi.org/10.21105/joss.04747

When using a GPU (through PyTorch), we observe a significant reduction in computation time:
898x and 2360x reduction for GD and ADMM, respectively.

Quantifying performance
To methodically compare different reconstruction approaches, it is necessary to quantify the
performance. To this end, LenslessPiCam provides functionality to extract regions of interest
from the reconstruction and compare them with the original image via multiple metrics:

• Mean-squared error (MSE), where lower is better and the minimum value is 0;
• Peak signal-to-noise ratio (PSNR), where higher is better with values given in decibels

(dB);
• Structural similarity index measure (SSIM), where values are within [-1, 1] and higher is

better;
• Learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018a), where values

are within [0, 1] and lower is better.

MSE, PSNR, and SSIM are computed using skimage.metrics (Van der Walt et al., 2014),
while LPIPS is computed using lpips (Zhang et al., 2018b). MSE and PNSR compare images
pixel-wise, while SSIM and LPIPS compare images patch-wise.

Figure 6 and Table 2 show how a reconstruction can be evaluated against an original image,
using scripts/compute_metrics_from_original.py.

Figure 6: Comparing lensless reconstruction (left) with original image displayed on a screen (right).

Table 2: Metrics for Figure 6.

MSE PSNR SSIM LPIPS
0.164 7.85 0.405 0.645

One limitation with comparing the reconstructed image (from measurements) directly with the
original image is that the lighting during measurement can lead to rather poor results on the
metrics, even though the content is visually similar (as in Figure 6). To mitigate this difference,
we can compare the reconstructed image with the image displayed on the screen, but captured
with a lensed camera. In the next section, we describe the functionalities LenslessPiCam

provides for collecting such data and using existing datasets. Alternatively, simulation can be
used to compare reconstruction algorithms without having to collect data.

Measured and simulated data
Sometimes it may be of interest to perform an exhaustive evaluation on a large dataset.
LenslessPiCam could be used for collecting such a dataset with the proposed camera

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

6

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Structural_similarity
https://github.com/LCAV/LenslessPiCam/blob/main/scripts/compute_metrics_from_original.py
https://doi.org/10.21105/joss.04747

by using the remote display and capture scripts, i.e. scripts/remote_display.py and
scripts/remote_capture.py, respectively.

Moreover, the authors of (Monakhova et al., 2019b) have already collected a dataset of
25,000 parallel measurements, namely 25,000 pairs of DiffuserCam and lensed camera images
(Monakhova et al., 2019a). LenslessPiCam offers functionality to evaluate a reconstruction
algorithm on the full dataset (100 GB), or a subset of 200 files (725 MB) that we have prepared.
Note that this dataset is collected with a different lensless camera, but is nonetheless useful
for exploring reconstruction techniques.

Table 3 shows the average metric results after applying 100 iterations of ADMM to the subset
we have prepared, using scripts/evaluate_mirflickr_admm.py.

Table 3: Average metrics for 100 iterations of ADMM on a subset (200 files) of the DiffuserCam Lensless
Mirflickr Dataset.

MSE PSNR SSIM LPIPS
0.0797 12.7 0.535 0.585

One can also visualize the performance on a single file of the dataset, e.g., by using
scripts/apply_admm_single_mirflickr.py to show how the reconstruction changes as the
number of iterations increase.[^9] The final reconstruction and outputed metrics are shown in
Figure 7 and Table 4.

Figure 7: Visualizing performance of ADMM (100 iterations) on a single file of the DiffuserCam Lensless
Mirflickr Dataset.

Table 4: Metrics for Figure 7.

MSE PSNR SSIM LPIPS
0.0682 11.7 0.486 0.504

Scripts inside scripts/sim show how to simulate lensless camera measurements given a PSF,
most notably with PyTorch compatibility for easy integration with machine learning tasks.

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

7

https://github.com/LCAV/LenslessPiCam/blob/main/scripts/remote_display.py
https://github.com/LCAV/LenslessPiCam/blob/main/scripts/remote_capture.py
https://drive.switch.ch/index.php/s/vmAZzryGI8U8rcE
https://github.com/LCAV/LenslessPiCam/blob/main/scripts/evaluate_mirflickr_admm.py
https://github.com/LCAV/LenslessPiCam/blob/main/scripts/apply_admm_single_mirflickr.py
https://github.com/LCAV/LenslessPiCam/tree/main/scripts/sim
https://doi.org/10.21105/joss.04747

This approach can be used to conveniently compare reconstruction algorithms without having
to collect data.

Conclusion
In summary, LenslessPiCam provides all the necessary hardware designs and software to build,
use, and evaluate a lensless camera with low-cost and accessible components. Furthermore, a
simulation framework allows users to experiment with lensless imaging without having to build
the camera. As we continue to use LenslessPiCam as a research and educational platform, we
hope to investigate and incorporate:

• computational refocusing and 3D imaging;
• video reconstruction;
• on-device reconstruction;
• programmable masks;
• data-driven, machine learning reconstruction techniques.

Acknowledgements and disclosure of funding
We acknowledge feedback from Julien Fageot and the students during the first iteration of
this project in our graduate course.

This work was in part funded by the Swiss National Science Foundation (SNSF) under grants
CRSII5 193826 “AstroSignals - A New Window on the Universe, with the New Generation
of Large Radio-Astronomy Facilities” (M. Simeoni), 200 021 181 978/1 “SESAM - Sensing
and Sampling: Theory and Algorithms” (E. Bezzam) and CRSII5 180232 “FemtoLippmann -
Digital twin for multispectral imaging” (S. Kashani).

References
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202. https:
//doi.org/10.1137/080716542

Bezzam, E., Hoffet, A., & Prandoni, P. (2019). Teaching practical DSP with off-the-shelf
hardware and free software. ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 7660–7664. https://doi.org/10.1109/
ICASSP.2019.8682923

Bezzam, E., Scheibler, R., Azcarreta, J., Pan, H., Simeoni, M., Beuchat, R., Hurley, P., Bruneau,
B., Ferry, C., & Kashani, S. (2017). Hardware and software for reproducible research in
audio array signal processing. 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 6591–6592. https://doi.org/10.1109/ICASSP.2017.8005297

Bezzam, E., Vetterli, M., & Simeoni, M. (2022). Privacy-enhancing optical embeddings for
lensless classification. arXiv Preprint arXiv:2211.12864.

Biscarrat, C., Parthasarathy, S., Kuo, G., & Antipa, N. (2018). Build your own DiffuserCam:
Tutorial. https://waller-lab.github.io/DiffuserCam/tutorial.html

Boominathan, V., Robinson, J. T., Waller, L., & Veeraraghavan, A. (2022). Recent advances
in lensless imaging. Optica, 9(1), 1–16. https://doi.org/10.1364/OPTICA.431361

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1), 1–122. https://doi.org/10.1561/2200000016

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

8

https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1109/ICASSP.2019.8682923
https://doi.org/10.1109/ICASSP.2019.8682923
https://doi.org/10.1109/ICASSP.2017.8005297
https://waller-lab.github.io/DiffuserCam/tutorial.html
https://doi.org/10.1364/OPTICA.431361
https://doi.org/10.1561/2200000016
https://doi.org/10.21105/joss.04747

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362.

Monakhova, K., Yurtsever, J., Kuo, G., Antipa, N., Yanny, K., & Waller, L. (2019a). Diffuser-
Cam lensless Mirflickr dataset. https://waller-lab.github.io/LenslessLearning/dataset.html

Monakhova, K., Yurtsever, J., Kuo, G., Antipa, N., Yanny, K., & Waller, L. (2019b). Learned
reconstructions for practical mask-based lensless imaging. Optics Express, 27 (20), 28075.
https://doi.org/10.1364/OE.27.028075

Nesterov, Y. E. (1983). A method for solving the convex programming problem with conver-
gence rate 𝑂(1/𝑘2). Dokl. Akad. Nauk SSSR, 269, 543–547.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch.

Simeoni, M. (2021). Pycsou. In GitHub repository. GitHub. https://github.com/matthieumeo/
pycsou

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager,
N., Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2,
e453.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in python. Nature Methods, 17(3),
261–272.

Yadan, O. (2019). Hydra - a framework for elegantly configuring complex applications. Github.
https://github.com/facebookresearch/hydra

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018a). The unreasonable
effectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 586–595. https://doi.org/10.1109/CVPR.2018.
00068

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018b). Perceptual similarity
metric and dataset. Github. https://github.com/richzhang/PerceptualSimilarity

Bezzam et al. (2023). LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi. Journal of
Open Source Software, 8(86), 4747. https://doi.org/10.21105/joss.04747.

9

https://waller-lab.github.io/LenslessLearning/dataset.html
https://doi.org/10.1364/OE.27.028075
https://github.com/matthieumeo/pycsou
https://github.com/matthieumeo/pycsou
https://github.com/facebookresearch/hydra
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://github.com/richzhang/PerceptualSimilarity
https://doi.org/10.21105/joss.04747

	Summary
	Statement of need
	Contributions
	High-level, modular functionality for reconstructions
	Efficient reconstruction
	Quantifying performance
	Measured and simulated data
	Conclusion
	Acknowledgements and disclosure of funding
	References

