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Introduction
Multi-way data, also known as tensor data or data cubes, occur in many applications, such
as text mining (Bader et al., 2008), neuroscience (Andersen & Rayens, 2004) and chemical
analysis (Bro, 1997). Uncovering the meaningful patterns within such data can provide crucial
insights into the data source, and tensor decompositions have proven an effective tool for this
task. In particular, the PARAFAC model, also known as CANDECOMP/PARAFAC (CP) or the
canonical polyadic decomposition (CPD), has shown great promise for extracting interpretable
components. PARAFAC has, for example, extracted topics from an email corpus (Bader et al.,
2008) and chemical spectra from fluorescence spectroscopy data (Bro, 1997). For a thorough
introduction to tensor methods, we refer the reader to (Tamara G. Kolda & Bader, 2009) and
(Bro, 1997). The goal of TensorLy-Visualisation (TLViz) is to provide utilities for analysing,
visualising and working with tensor decompositions for data analysis in Python.

Statement of need
Python has become a language of choice for data science for both industrial and academic
research. Open source tools, such as scikit-learn (Pedregosa et al., 2011) and Pandas (McKinney,
2010) have made a variety of machine learning methods accessible within Python. Recently,
TensorLy has made tensor methods also available in Python (Kossaifi et al., 2019), providing
seamless integration of multi-way data mining methods within the python scientific environment.
However, while TensorLy is an open-source, community-driven package for calculating tensor
decompositions, it does not include tools for analysing or visualising the tensor decomposition
models. Because tensor decompositions provide powerful tools to extract insight from multi-
way data, effective visualisations are crucial as they are needed to communicate this insight.
Furthermore, visualisation and evaluation are essential steps in the multi-way analysis pipeline
— without tools for these steps, we cannot find suitable models.

There is, to our knowledge, no free open source software (FOSS) that facilitates all these
steps. Some tools cover part of this scope, such as Tensor Toolbox for MATLAB (Tamara
G. Kolda & Bader, 2006), which provides some functionality for model evaluation; and the
N-Way toolbox for MATLAB(Andersson & Bro, 2000) and Higher Order Tensor ToolBOX
(HOTTBOX) for Python (Kisil et al., 2021), which both provide limited functionality for
model evaluation and visualisation. Finally, PLSToolbox covers most of our scope, but it is a
closed-source commercial software. There is, therefore, a growing need for FOSS tools for the
visualisation and evaluation of tensor decompositions.
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Example
The PARAFAC model is straightforward, but there are several pitfalls to consider. Two
main pitfalls are the scaling and permutation indeterminacy (Bro, 1997). The order of the
components does not matter, and the magnitude of one factor matrix can be scaled arbitrarily
so long as another factor matrix is inversely scaled (an even number of components may even
change sign). Therefore, it can be time-consuming and cumbersome to go from having fitted
a PARAFAC model to visualising it. TLViz takes care of these hurdles in a transparent way.
The code below shows how easily we can use TLViz and TensorLy to analyse a fluorescence
spectroscopy dataset.

import tlviz

import matplotlib.pyplot as plt

from tensorly.decomposition import parafac

def fit_parafac(dataset, num_components, num_inits):

model_candidates = [

parafac(dataset.data, num_components, init=”random”, random_state=i)

for i in range(num_inits)

]

model = tlviz.multimodel_evaluation.get_model_with_lowest_error(

model_candidates, dataset

)

return tlviz.postprocessing.postprocess(model, dataset)

data = tlviz.data.load_aminoacids()

cp_tensor = fit_parafac(data, 3, num_inits=3)

tlviz.visualisation.components_plot(cp_tensor)

plt.show()

Loading Aminoacids dataset from:

Bro, R, PARAFAC: Tutorial and applications, Chemometrics and Intelligent

↩ Laboratory Systems, 1997, 38, 149-171
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Figure 1: An example figure showing the component vectors of a three-component PARAFAC model
fitted to a fluorescence spectroscopy dataset

The above code uses TensorLy to fit five three-component PARAFAC models to the data.
Then it uses TLViz to do the following steps:

1. Select the model that gave the lowest reconstruction error.
2. Normalise the component vectors, storing their magnitude in a separate weight-vector.
3. Permute the components in descending weight (i.e. signal strength) order.
4. Flip the components, so they point in a logical direction compared to the data.
5. Convert the factor matrices into Pandas DataFrames with logical indices.
6. Plot the components using matplotlib.

All these steps are well documented with references to the literature. This makes it easy for
new practitioners to analyse multi-way data without falling for known pitfalls.
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Overview
TLViz follows the procedural paradigm, and all of TLViz’s functionality lies in functions
separated over 8 public modules:

1. tlviz.data - various open datasets
2. tlviz.factor_tools - transforms and compares PARAFAC models without using refer-

ence data
3. tlviz.model_evaluation - evaluates a PARAFAC model
4. tlviz.multimodel_evaluation - compares and evaluates multiple models at once
5. tlviz.outliers - finds data points that may be outliers
6. tlviz.postprocessing - post-processes PARAFAC models, usually used before visualis-

ing
7. tlviz.utils - general utilities that can be useful (e.g. forming dense tensors from

decompositions)
8. tlviz.visualisation - visualising component models

A core design choice behind TLViz is how to store metadata. Consider the example above. It
is necessary to know the values along the x-axis to interpret these components. Therefore, we
use xarray DataArrays to store data tensors (Hoyer & Hamman, 2017), keeping the correct
indices for each tensor mode (i.e. axis), and Pandas DataFrames to store factor matrices.
However, TensorLy works with NumPy arrays. TLViz, therefore, provides useful tools to add
the coordinates from an xarray DataArray onto the factor matrices obtained with TensorLy.
Furthrmore, all functions of TLViz support both labelled and unlabelled decompositions
(i.e. DataFrames and NumPy arrays) and will use the labels whenever possible.

The visualisation module uses matplotlib to create the plots, and the goal of this module is
to facilitate fast prototyping and exploratory analysis. However, TLViz can also seamlessly
convert factor matrices into tidy tables, which are better suited for visualisation libraries such
as Seaborn (Waskom, 2021) and PlotLy Express, thus making it painless to combine tensor
decomposition with the plotting library that best suits the user’s specific needs.

To be easy to use, scientific software should have thorough and accurate documentation. For
TLViz, this means two things: Explaining what the code does and why this is important.
Therefore, we have taken care to review the literature, citing original sources wherever possible.
By gathering the references together with the API documentation and examples, we make it
straightforward for researchers new to the field to discover suitable references for their analysis.

The gallery of examples provided by TLViz explains the tools included in the package and
how to use them. The gallery contains, among others, examples that explain how to select
the number of components in PARAFAC models, how to detect outliers and how to combine
TLViz with PlotLy to get interactive visualisations. All examples include relevant references,
making it easy for new practitioners to get started.
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