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Summary
A common requirement in science is to store and share large sets of simulation data in an
efficient, nested, flexible and human-readable way. Such datasets contain number counts and
distributions, i.e. histograms and maps, of arbitrary dimension and variable type, e.g. floating-
point number, integer or character string. Modern high-level programming languages like Perl
and Python have associated arrays, knowns as dictionaries or hashes, respectively, to fulfil this
storage need. Low-level languages used more commonly for fast computational simulations,
such as C and Fortran, lack this functionality. We present a libcdict, a C dictionary library,
to solve this problem. Libcdict provides C and Fortran application programming interfaces
(APIs) to native dictionaries, called cdicts, and functions for cdict to load and save these as
JSON and hence for easy interpretation in other software and languages like Perl, Python and
R.

Statement of need
Users of high-level languages such as Perl or Python have access to associated-array data
structures through dictionaries and hashes, respectively. These allow arbitrary data types to be
stored in array-like structures. These are in turn accessed through key-value pairs which allow
the value to be a further, nested associated array, allowing arbitrary nesting of data. Compiled
low-level languages, like C and Fortran, are more suited to high-speed and repeated calculations
typical in science. These languages lack native associated-array functionality. While there are
pure hash-table solutions out there, such as glib (Glib, 2022) and uthash (Hansen, 2022),
these do not combine a simple API for setting and adding to nested structures, a small library
footprint, fast input and output, and standardised JSON output to easily interface with other
languages and tools. libcdict provides an API for such functionality which allows cdicts to
be nested in cdicts, hence arbitrarily-nested dictionaries of variables in C just as in Perl or
Python.

libcdict is written in C and provides an API through a set of C macros. Nested cdict

structures have values in them set with a single line of code. libcdict has been used for the
last year in the binary_c single- and binary-star population nucleosynthesis framework (Izzard
et al., 2004, 2006, 2009, 2018). Recent works (Hendriks & Izzard, 2023b; Izzard & Jermyn,
2023; Mirouh et al., 2023; Yates et al., 2023) compute the evolution of millions of single-
and binary-stellar systems in only a few hours using its binary_c-python Python frontend
(Hendriks & Izzard, 2023a). We provide libcdict as open-source code on Gitlab subject to
the GPL3. libcdict also has a comprehensive test suite run through its configuration program
cdict-config.
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Using libcdict
libcdict is flexible but pragmatic. Keys to cdicts can be any C scalar or pointer. Values can
be scalars, pointers, arrays or other cdicts, but arrays must be of a single C type. Values can
store metadata of arbitrary type. Pointer values are optionally garbage collected when a cdict

is freed. A set of API macros provides simple nesting facilities so that placing a value in a
nested location given a list of keys is a simple task for the C programmer. Issues such as C
variable typing are automatically handled for the user.

Variables are internally hashed using uthash (Hansen, 2022). libcdict provides a custom
JSON output function and inputs JSON using jsmn (Zaitsev, 2022). Floating-point input and
output uses fast double parser (Lemire, 2021, 2022) and Ryū (Adams, 2018, 2019, 2022),
respectively, both of which are considerably faster than equivalent C library functions. libdict

allows customizable floating-point accuracy for output and when comparing floating-point
numbers, e.g. during sorting of key or variable lists.

Installation uses meson (Pakkanen, 2022) and ninja (Martin, 2022). libcdict has been tested
with the GCC (10.3.0) and Clang (12.0.0) compilers.

libcdict in stellar-population statistics calculations
libcdict was developed to solve the problem of storing statistics in stellar-population calcula-
tions in binary_c. When evolving a population of millions, sometimes billions, of stars, each
for thousands of time steps, enormous amounts of data are computed. It is impractical to
output these data every time step as these are typically ∼ 106 × 104 = 1010 lines, each of
which can easily be ∼ 1KB long. The data from each star could be sent to a Perl or Python
front-end which merges them into a dictionary of population statistics. This communication
between programming languages involves significant overhead which compares similarly to the
runtime of the stellar code itself thus greatly increases runtime and cost.

To overcome this problem, binary_c internally generates an associative-array cdict in native C.
This cdict, and the stellar statistics it contains, is filled inside the binary_c simulation as each
star is simulated. Generation of the stellar-population data in the cdict is efficient because
it is only in C and communication with the frontend (Python) code is kept to a minimum.
The cdict’s dataset is output only once, as human-readable JSON easily understood by Perl
or Python, at the end of the simulation. Large simulations are often split across clusters of
machines using binary_c-python. The data from each run are stored as JSON chunks then
merged in Python when the final run completes. The overhead involved in this joining is small
compared to the effort of simulating the stars: the goal of libcdict has thus been achieved.

We provide an interactive example made with binary_c and binary_c-python using libcdict

in its examples directory (Izzard, 2022). The libcdict JSON output of a Hertzsprung-Russell
diagram, the most important diagnostic plot in stellar astrophysics, is plotted using Bokeh

(Bokeh Development Team, 2014; Bokeh GitHub, 2022) to provide immediate access to nested
data sets.
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