
libcdict: fast dictionaries in C
Robert G. Izzard 1¶, David D. Hendriks 1, and Daniel P. Nemergut 1

1 Department of Physics, School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH,
Surrey, UK ¶ Corresponding author

DOI: 10.21105/joss.04756

Software
• Review
• Repository
• Archive

Editor: Ivelina Momcheva
Reviewers:

• @langmm
• @pgrete

Submitted: 05 August 2022
Published: 12 December 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A common requirement in science is to store and share large sets of simulation data in an
efficient, nested, flexible and human-readable way. Such datasets contain number counts and
distributions, i.e. histograms and maps, of arbitrary dimension and variable type, e.g. floating-
point number, integer or character string. Modern high-level programming languages like Perl
and Python have associated arrays, knowns as dictionaries or hashes, respectively, to fulfil this
storage need. Low-level languages used more commonly for fast computational simulations,
such as C and Fortran, lack this functionality. We present a libcdict, a C dictionary library,
to solve this problem. Libcdict provides C and Fortran application programming interfaces
(APIs) to native dictionaries, called cdicts, and functions for cdict to load and save these as
JSON and hence for easy interpretation in other software and languages like Perl, Python and
R.

Statement of need
Users of high-level languages such as Perl or Python have access to associated-array data
structures through dictionaries and hashes, respectively. These allow arbitrary data types to be
stored in array-like structures. These are in turn accessed through key-value pairs which allow
the value to be a further, nested associated array, allowing arbitrary nesting of data. Compiled
low-level languages, like C and Fortran, are more suited to high-speed and repeated calculations
typical in science. These languages lack native associated-array functionality. While there are
pure hash-table solutions out there, such as glib (Glib, 2022) and uthash (Hansen, 2022),
these do not combine a simple API for setting and adding to nested structures, a small library
footprint, fast input and output, and standardised JSON output to easily interface with other
languages and tools. libcdict provides an API for such functionality which allows cdicts to
be nested in cdicts, hence arbitrarily-nested dictionaries of variables in C just as in Perl or
Python.

libcdict is written in C and provides an API through a set of C macros. Nested cdict

structures have values in them set with a single line of code. libcdict has been used for the
last year in the binary_c single- and binary-star population nucleosynthesis framework (Izzard
et al., 2004, 2006, 2009, 2018). Recent works (Hendriks & Izzard, 2023b; Izzard & Jermyn,
2023; Mirouh et al., 2023; Yates et al., 2023) compute the evolution of millions of single-
and binary-stellar systems in only a few hours using its binary_c-python Python frontend
(Hendriks & Izzard, 2023a). We provide libcdict as open-source code on Gitlab subject to
the GPL3. libcdict also has a comprehensive test suite run through its configuration program
cdict-config.

Izzard et al. (2023). libcdict: fast dictionaries in C. Journal of Open Source Software, 8(92), 4756. https://doi.org/10.21105/joss.04756. 1

https://orcid.org/0000-0003-0378-4843
https://orcid.org/0000-0002-8717-6046
https://orcid.org/0009-0001-5004-7515
https://doi.org/10.21105/joss.04756
https://github.com/openjournals/joss-reviews/issues/4756
https://gitlab.com/robizzard/libcdict
https://doi.org/10.5281/zenodo.10287855
https://www.mpia.de/homes/momcheva/
https://orcid.org/0000-0003-1665-2073
https://github.com/langmm
https://github.com/pgrete
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04756


Using libcdict
libcdict is flexible but pragmatic. Keys to cdicts can be any C scalar or pointer. Values can
be scalars, pointers, arrays or other cdicts, but arrays must be of a single C type. Values can
store metadata of arbitrary type. Pointer values are optionally garbage collected when a cdict

is freed. A set of API macros provides simple nesting facilities so that placing a value in a
nested location given a list of keys is a simple task for the C programmer. Issues such as C
variable typing are automatically handled for the user.

Variables are internally hashed using uthash (Hansen, 2022). libcdict provides a custom
JSON output function and inputs JSON using jsmn (Zaitsev, 2022). Floating-point input and
output uses fast double parser (Lemire, 2021, 2022) and Ryū (Adams, 2018, 2019, 2022),
respectively, both of which are considerably faster than equivalent C library functions. libdict

allows customizable floating-point accuracy for output and when comparing floating-point
numbers, e.g. during sorting of key or variable lists.

Installation uses meson (Pakkanen, 2022) and ninja (Martin, 2022). libcdict has been tested
with the GCC (10.3.0) and Clang (12.0.0) compilers.

libcdict in stellar-population statistics calculations
libcdict was developed to solve the problem of storing statistics in stellar-population calcula-
tions in binary_c. When evolving a population of millions, sometimes billions, of stars, each
for thousands of time steps, enormous amounts of data are computed. It is impractical to
output these data every time step as these are typically ∼ 106 × 104 = 1010 lines, each of
which can easily be ∼ 1KB long. The data from each star could be sent to a Perl or Python
front-end which merges them into a dictionary of population statistics. This communication
between programming languages involves significant overhead which compares similarly to the
runtime of the stellar code itself thus greatly increases runtime and cost.

To overcome this problem, binary_c internally generates an associative-array cdict in native C.
This cdict, and the stellar statistics it contains, is filled inside the binary_c simulation as each
star is simulated. Generation of the stellar-population data in the cdict is efficient because
it is only in C and communication with the frontend (Python) code is kept to a minimum.
The cdict’s dataset is output only once, as human-readable JSON easily understood by Perl
or Python, at the end of the simulation. Large simulations are often split across clusters of
machines using binary_c-python. The data from each run are stored as JSON chunks then
merged in Python when the final run completes. The overhead involved in this joining is small
compared to the effort of simulating the stars: the goal of libcdict has thus been achieved.

We provide an interactive example made with binary_c and binary_c-python using libcdict

in its examples directory (Izzard, 2022). The libcdict JSON output of a Hertzsprung-Russell
diagram, the most important diagnostic plot in stellar astrophysics, is plotted using Bokeh

(Bokeh Development Team, 2014; Bokeh GitHub, 2022) to provide immediate access to nested
data sets.

Acknowledgements
RGI acknowledges funding by STFC grants ST/L003910/1, ST/L003910/2 and ST/R000603/1.
DDH acknowledges funding by UKRI/UoS grant H120341A. We thank the authors of software
used by libcdict, especially Troy Hanson and Arthur O’Dwyer for uthash, Ulf Adams and
the Ryū team, Serge Zaitsev and the jsmu team, and Daniel Lemire for fast double parser.

Izzard et al. (2023). libcdict: fast dictionaries in C. Journal of Open Source Software, 8(92), 4756. https://doi.org/10.21105/joss.04756. 2

https://doi.org/10.21105/joss.04756


References
Adams, U. (2018). Ryū: Fast float-to-string conversion. SIGPLAN Not., 53(4), 270–282.

https://doi.org/10.1145/3296979.3192369

Adams, U. (2019). Ryū revisited: Printf floating point conversion. In Proceedings of the ACM
on Programming Languages (OOPSLA; Vol. 3, pp. 1–23). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3360595

Adams, U. (2022). Ryū & Ryū Printf. In GitHub repository. https://github.com/ulfjack/ryu

Bokeh Development Team. (2014). Bokeh: Python library for interactive visualization.
http://www.bokeh.pydata.org

Bokeh GitHub. (2022). Bokeh. In GitHub repository. GitHub. https://github.com/bokeh/

Glib. (2022). GLIB hash tables. In GLIB official documentation. Gitlab. https://docs.gtk.org/
glib/index.html

Hansen, T. D. (2022). uthash: A hash table for C structures. In GitHub repository. https:
//troydhanson.github.io/uthash/

Hendriks, D. D., & Izzard, R. G. (2023a). Binary_c-python: A python-based stellar population
synthesis tool and interface to binary_c. Journal of Open Source Software, 8(85), 4642.
https://doi.org/10.21105/joss.04642

Hendriks, D. D., & Izzard, R. G. (2023b). Mass-stream trajectories with non-synchronously
rotating donors. 524(3), 4315–4332. https://doi.org/10.1093/mnras/stad2077

Izzard, R. G. (2022). LIBCDICT examples. In Gitlab.com repository. Gitlab.com. https:
//doi.org/10.5281/zenodo.10276619

Izzard, R. G., Dray, L. M., Karakas, A. I., Lugaro, M., & Tout, C. A. (2006). Population
nucleosynthesis in single and binary stars. I. Model. Astronomy and Astrophysics, 460,
565–572. https://doi.org/10.1051/0004-6361:20066129

Izzard, R. G., Glebbeek, E., Stancliffe, R. J., & Pols, O. R. (2009). Population synthesis of
binary carbon-enhanced metal-poor stars. Astronomy and Astrophysics, 508, 1359–1374.
https://doi.org/10.1051/0004-6361/200912827

Izzard, R. G., & Jermyn, A. S. (2023). Circumbinary discs for stellar population models.
521(1), 35–50. https://doi.org/10.1093/mnras/stac2899

Izzard, R. G., Preece, H., Jofre, P., Halabi, G. M., Masseron, T., & Tout, C. A. (2018). Binary
stars in the Galactic thick disc. Monthly Notices of the Royal Astronomical Society, 473,
2984–2999. https://doi.org/10.1093/mnras/stx2355

Izzard, R. G., Tout, C. A., Karakas, A. I., & Pols, O. R. (2004). A new synthetic model for
asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 350,
407–426. https://doi.org/10.1111/j.1365-2966.2004.07446.x

Lemire, D. (2021). Number Parsing at a Gigabyte per Second. arXiv e-Prints, arXiv:2101.11408.
https://doi.org/10.1002/spe.2984

Lemire, D. (2022). fast_double_parser: 4× faster than strtod. In GitHub repository.
https://github.com/lemire/fast_double_parser

Martin, E. (2022). Ninja, a small build system with a focus on speed. In GitHub repository.
GitHub. https://github.com/ninja-build/ninja

Mirouh, G. M., Hendriks, D. D., Dykes, S., Moe, M., & Izzard, R. G. (2023). Detailed
equilibrium and dynamical tides: impact on circularization and synchronization in open
clusters. 524(3), 3978–3999. https://doi.org/10.1093/mnras/stad2048

Izzard et al. (2023). libcdict: fast dictionaries in C. Journal of Open Source Software, 8(92), 4756. https://doi.org/10.21105/joss.04756. 3

https://doi.org/10.1145/3296979.3192369
https://doi.org/10.1145/3360595
https://github.com/ulfjack/ryu
http://www.bokeh.pydata.org
https://github.com/bokeh/
https://docs.gtk.org/glib/index.html
https://docs.gtk.org/glib/index.html
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/
https://doi.org/10.21105/joss.04642
https://doi.org/10.1093/mnras/stad2077
https://doi.org/10.5281/zenodo.10276619
https://doi.org/10.5281/zenodo.10276619
https://doi.org/10.1051/0004-6361:20066129
https://doi.org/10.1051/0004-6361/200912827
https://doi.org/10.1093/mnras/stac2899
https://doi.org/10.1093/mnras/stx2355
https://doi.org/10.1111/j.1365-2966.2004.07446.x
https://doi.org/10.1002/spe.2984
https://github.com/lemire/fast_double_parser
https://github.com/ninja-build/ninja
https://doi.org/10.1093/mnras/stad2048
https://doi.org/10.21105/joss.04756


Pakkanen, J. (2022). The Meson build system. In GitHub repository. GitHub. https:
//github.com/mesonbuild/meson

Yates, R. M., Hendriks, D., Vijayan, A. P., Izzard, R. G., Thomas, P. A., & Das, P. (2023).
The impact of binary stars on the dust and metal evolution of galaxies. https://doi.org/10.
1093/mnras/stad3419

Zaitsev, S. (2022). jsmn, a minimalistic JSON parser in C. In GitHub repository. https:
//github.com/zserge/jsmn

Izzard et al. (2023). libcdict: fast dictionaries in C. Journal of Open Source Software, 8(92), 4756. https://doi.org/10.21105/joss.04756. 4

https://github.com/mesonbuild/meson
https://github.com/mesonbuild/meson
https://doi.org/10.1093/mnras/stad3419
https://doi.org/10.1093/mnras/stad3419
https://github.com/zserge/jsmn
https://github.com/zserge/jsmn
https://doi.org/10.21105/joss.04756

	Summary
	Statement of need
	Using libcdict
	libcdict in stellar-population statistics calculations
	Acknowledgements
	References

